c03 JWBS043-Rogers September 13, 2010 11:24 Printer Name: Yet to Come
52 THE THERMODYNAMICS OF SIMPLE SYSTEMS
PROBLEMS AND EXAMPLE
Example 3.1 Line Integrals
What is the line integral of the function f(x,y)=xyover the parabolic curve
y=f(x)=x^2 /2from(x,y)=( 0 , 0 )to
(
1 ,^12
)
?
Solution 3.1 One way of writing a line integral of the functionI=
∫
Cf(x,y)ds
over the curve C is to specifyy=f(x) andds=
(
1 +
(
dy
dx
) 2 )^1 /^2
dx. For example,
integrating the function f(x,y)=xyover the parabolic curvey=f(x)=x^2 / 2
from(x,y)=( 0 , 0 )to
(
1 ,^12
)
. We have (Steiner, 1996)
f(x,y)=xy=x
(
x^2
2
)
=
x^3
2
and
dy
dx
=
d
(
x^2
2
)
dx
=x
Thus,
I=
∫
C
f(x,f(x))
(
1 +
(
dy
dx
) 2 ) 1 / 2
dx=
∫ 1
0
x^3
2
(
1 +x^2
)^1
(^2) dx
=
1
2
∫ 1
0
(
x^6 +x^8
) 1 / 2
dx
where the limits of integration are the limits onx. Integration by Mathcad©Cgives
1
2
∫ 1
0
(
x^6 +x^8
). 5
dx= 0. 161
Problem 3.1
One expression of a line integral is
∫
C
F(x,y)dx+G(x,y)dy
where the subscriptCindicates a line (or curve) integral. IfF(x,y)=−y,G(x,y)=
xy, and the line is the diagonal fromx=1toy=1 (Fig. 3.8). Carry out the
integration.