The portfolio variance is given by the weighted asset variances and
covariances.
(8.1)whereρ 12 = correlation coefficients of assets 1, 2
σ 12 = covariance of assets 1, 2
let x 2 = 1 – x 1To minimize the portfolio variance, one should take the first derivative of
the variance with respect to the decision variable, x 1 , and set the function
equal to zero.
(8.2)(8.2)Equation (8.2) is the risk-minimizing investment in security one in a two-asset
portfolio. One can compare the portfolio variances of the optimally weighted
portfolio with an equally weighted portfolio, in which x 1 = x 2 = 0.50.
let x 1 = weight of JNJ
x 2 = weight of IBMThe portfolio expected return is a weighted combination of asset expected
returns.
E(Rp) = x 1 E(R 1 ) + x 2 E(R 2 )
= .5(.0852) + .5(.0768) = .0810 (8.3)σσσσσσρσσσσρσσρσσσppxxxxxxxxxxxx xx2
12
12
12
22
111212
12
12
22
11121212
12
1122
112 1 2 12
1212
2
1212112111 2 2=+−+−=+−+−=+−−+−=() ()() ()()()σσσρσσρσσ∂σρ
∂σσσρσσρσσσρσσσσρσ12
112
22
112 1 2 12
12 12
21112
22
122
121 2 1 12 1222
1212 1 12
122
11212 2 22222 4 022 2 2 4+−++−=−++−=−=+−()xx x xxxx xxxx 11212
22
12 12 1 22
12 12122 121
12
22
121 222σσσρσσσρσσ
σσρσ
σσρσσ()
()+−=−=−
+−xxσσσσσρσσp xx xx2
12
12
22
22
111212 12 1 2=++− 21=()