1.3 Solutions 85
1.103
<x>=
∫∞
0
xf(x)dx/
∫∞
0
f(x)dx
=
∫∞
0
x^2 e−
xλ
dx/
∫∞
0
xe−
xλ
dx
=
2 λ^3
λ^2
= 2 λ
Most probable value ofxis obtained by maximizing the functionxe−x/λ
d
dx
(xe−x/λ)= 0
e−
xλ(
1 −
x
λ
)
= 0
∴x=λ
x(most probable)=λ
1.3.14 NumericalIntegration
1.104 The trapezoidal rule is
Area=
(
1
2
y 0 +y 1 +y 2 +···+yn− 1 +
1
2
yn
)
Δx
Given integral is
∫ 10
1 x
(^2) dx.Dividex=1tox=10 into 9 intervals.
Thusb−na=^109 −^1 = 1 =Δx
Substituting the abscissas in the equationy=x^2 , we get the ordinatesy=
1 , 4 , 9 , 16 ,···100.
area=
(
1
2
+ 4 + 9 + 25 + 36 + 49 + 64 + 81 +
1
2
× 100
)
= 334. 5
This may be compared with the value obtained from direct integration,[
x^3
3
] 10
1
=333.
Theerroris0.45%.
1.105 For Simpson’s rule
take 10 intervals
Hereb−na=^1010 −^0 = 1 =Δx
The area under the curvey=x^2 is given by
Δx
3
(y 0 + 4 y 1 + 2 y 2 + 4 y 3 + 2 y 4 +···+ 4 yn− 1 +yn)