102 2 Quantum Mechanics – I
cPγ=Eγ= 67 .5MeV
λ=
h
p
= 2 π
c
cp
=
(2π)(197.3MeV.fm)
67 .5MeV
= 18 .36 fm= 1. 836 × 10 −^14 m.
2.2λ=
(
150
V
) 1 / 2
=
(
150
54
) 1 / 2
= 1. 667 A ̊
2.3λ=
h
p
=
2 πc
(2mc^2 T)^1 /^2
=(2π)×
197 .3MeV−fm
(2×939 T−MeV)^1 /^2
= 28. 6 × 10 −^5 A ̊/T^1 /^2
where T is in MeV. If T is in eV,λ= 0. 286 A ̊/T^1 /^2
2.4λ=
h
p
=
6. 63 × 10 −^34 J−s
(2× 9. 1 × 10 −^31 × 1. 6 × 10 −^19 )^1 /^2
= 12. 286 × 10 −^10 m/V^1 /^2 =
(
151
V
) 1 / 2
.
2.5 (a)
mnv^2
2
=
p^2
2 mn
=
3 kT
2
=
(
3
2
)
× 1. 38 × 10 −^23 ×
300
1. 6 × 10 −^19
= 0 .0388 eV
cC p=
(√
2 mnc^2 ·En
) 1 / 2
=(2× 940 × 106 × 0 .0388)^1 /^2 = 8 ,541 eV
λ=
h
p
=
hc
cp
= 3. 9 × 10 −^15 (eV−s)× 3 × 108 m−s−^1 / 8 ,541 eV
= 1. 37 × 10 −^10 m= 1. 37 A ̊
Such neutrons can be diffracted by crystals as their deBroglie wavelength
is comparable with the interatomic distance in the crystal.
(b)Δpx.Δx=
Put the uncertainty in momentum equal to the momentum itself,Δpx=p
cp=
c
Δx
=
197 .3MeV−fm
1 .0fm
= 197 .3MeV
E=(c^2 p^2 +m^2 c^4 )^1 /^2 =[(197.3)^2 +(940)^2 ]^1 /^2 = 960 .48 MeV
Kinetic energyT=E−mc^2 = 960. 5 − 940 = 20 .5MeV
2.6 E^2 =c^2 p^2 +m^2 c^4
^2 ω^2 =c^2 ^2 k^2 +m^2 c^4
ω=
(
c^2 k^2 +
m^2 c^4
^2