124 2 Quantum Mechanics – I
2.68 (a) Letf=eiA; thenf†=
(
eiA
)†
=e−iA
Thereforef†f=e−iAeiA= 1
ThuseiAis unitary.
(b) (a) Momentum (b) Parity
2.69 (a) exp(iσxθ)= 1 +iσxθ+(iσxθ)^2 /2!+(iσxθ)^3 /3!+···
=(1−θ^2 /2!+θ^4 /4!...)+iσx(θ−θ^3 /3!+θ^5 /5!....)
=cosθ+iσxsinθ
(where we have used the identityσx^2 =1)
(b)
∫
φ∗(dψ/dx)dx=φ∗ψ−
∫
(dφ∗/dx)ψdx
Butφ∗ψ= 0
Hence
∫
φ∗
(
dψ
dx
)
dx=
∫(
−dφ
∗
dx
)
ψdx=
∫
−(dφ/dx)†ψdx
Therefore
(d
dx
)†
=−d/dx
2.70 (a) [x,Px]ψ=xPxψ−Pxxψ
=x
(
−i
∂
∂x
)
ψ+i
∂
∂x
(xψ)
=−ix
∂ψ
∂x
+ix
∂ψ
∂x
+iψ
=iψ
∴[x,Px]=i
(b) [x^2 ,Px]ψ=x^2 (−i∂ψ/∂x+i
∂
∂x
(x^2 ψ)
=−ix^2 ∂ψ/∂x+ix^2 ∂ψ/∂x+i(2x)ψ
= 2 ixψ
Therefore [x^2 ,px]= 2 ix
2.71 By definition a transformationAis said to be linear if for any constant (possi-
bly complex)λ
A(λX)=λAX
And if for any two vectorsxandy
A(x+y)=Ax+Ay
IfHis a hermitian operator
(x,Hλy)=(Hx,λy)=λ(Hx,y)=λ(x,Hy)=(x,λHy)
OrHλy=λHy
for anyy. Furthermore
(z,H(x+y))=(Hz,x+y)=(Hz,x)+(Hz,y)
=(z,Hx)+(z,Hy)=(z,Hx+Hy)
∴ H(x+y)=Hx+Hy
2.72 Consider the equation
∂
∂x
(ψ∗ψ)=ψ∗
∂ψ
∂x
+ψ
dψ∗
dx