126 2 Quantum Mechanics – I
This givesa=1,b=0forλ=1 anda=0,b=1forλ= 3
Hence the eigen states ofAare
(
1
0
)
and
(
0
1
)
(c) AsA=A†,Ais Hermitian and hence an observable.
2.76 (a) A general rule for commutators is
[A^2 ,B]=A[A,B]+[A,B]A
HereH=P^2 / 2 μ
[H,X]=(1/ 2 μ)[P^2 ,x]=(1/ 2 μ)(P[P,x]+[P,x]P)
=(1/ 2 μ)2p/i=p/iμ
Therefore [x,H]=ip/μ
(b)[[x,H],x]=
[
iPx
μ
,x
]
=
(
i
μ
)
[Px,x]=
(
i
μ
)
(−i)=
^2
μ
2.77[A^2 ,B]=AAB−BAA=AAB−ABA+ABA−BAA
=A[A,B]+[A,B]A
2.78(σ.A)(σ.B)=(σxAx+σyAy+σzAz)(σxBx+σyBy+σzBz)
=AxBxσx^2 +AyByσy^2 +AzBzσz^2 +σxσyAxBy+σxσzAxBz
+σyσxAyBx+σyσzAyBz+σzσxAzBx+σzσyAzBy
=A.B+iσz(AxBy−AyBx)+iσx(AyBz−AzBy)
+iσy(AzBx−BzAx)
=A.B+i[σ.(A×B)]z+i[σ.(A×B)]x+i[σ.(A×B)]y
=A.B+iσ.(A×B)
where we have used the identities in simplifying:
σx^2 =σy^2 =σz^2 = 1
andσyσx=−σxσyetc.
2.79 (a)σyμ=σμy†as can be seen from the matrix elements ofσy. Thereforeσyis
Hermitian. It is the matrix of a Hermitian operator whose eigen values are
real.
(b) The eigen valuesλare found by setting
∣
∣
∣
∣
σy 11 −λσy 11
σy 21 σy 22 −λ
∣
∣
∣
∣=
∣
∣
∣
∣
−λ−i
i −λ
∣
∣
∣
∣=^0
λ^2 − 1 = 0 ,λ=± 1