162 3 Quantum Mechanics – II
3.12 First the wave function is normalized
N^2
∫∞
0
ψ∗ψdx= 1
N^2
∫∞
0
(√
2 e−
x
L
) 2
dx= 1
N= 1 /
√
L
The probability of finding the particle in the regionx≥1nmis
(
1
L
)∫∞
1
ψ∗ψdx=
∫∞
1
((
1
L
)^12
e−
xL
) 2
dx=
(
2
L
)∫∞
1
e−^2 x/Ldx
=−e−^2 x/L
∣
∣∞
1 =e
− (^2) = 0. 135
3.3.2 Schrodinger Equation. .........................
3.13
(
d^2
dr^2
+
2
r
+ 2 E
)
F(r)=0(1)
(a) By usingF(r)=exp(−r/v)y(r), andE=− 21 ν 2 , it is easily verified that
d^2 y
dr^2
=
2
v
(
d
dr
−
v
r
)
y (2)
(b)y(r)=
∑∞
p= 0
aprp+^1 (3)
dy
dr
=
∑
ap(p+1)rp (4)
d^2 y
dr^2
=
∑
app(p+1)rp−^1 (5)
Substitute (3), (4) and (5) in (2)
Σapp(p+ 1 )rp−^1 =
2
v
Σap(p+1)rp− 2 Σaprp
Replacepbyp−1 in the RHS and simplify
Σapp(p+1)rp−^1 =
2
v
Σap− 1 (p−ν)rp−^1
Comparing the coefficients ofrp−^1 on both sides
p(p+1)ap=
2
v
(p−v)ap− 1 (6)
(c) The series in (3) will terminate whenν=nwherenis a positive integer.
Heren= 2
Using (3)
y(r)=
∑^1
0
ap rp+^1 =a 0 r+a 1 r^2