168 3 Quantum Mechanics – II
(
1
sinθ)
∂
∂θ(
sinθdf
dθ)
+λf(θ)=0(2)
(
d
dθ)
=
(
d
dμ)
·
(
dμ
dθ)
=−sinθd
dμ
Writingf(θ)=P(μ), Eq. (2) becomes
d
dμ[
(
1 −μ^2)dp
dμ]
+λP= 0or(
1 −μ^2)d^2 p
dμ^2− 2 μdp
dμ+λp=0(3)One can solve Eq. (3) by series method
LetP=Σ∞k= 1 akμk (4)
dp
dμ=
∑
kakkμk−^1 (5)d^2 P
dμ^2=
∑
akk(k−1)μk−^2 (6)Using (4), (5) and (6) in (3)
∑
k(k−1)akμk−^2 −∑
k(k−1)akμk− 2∑
kakμk+λΣakμk= 0Equating equal powers ofk
(k+2)(k+1)ak+ 2 −[k(k−1)+ 2 k−λ]ak= 0
Orak+ 2 /ak=[k(k+ 1 )−λ]/(k+ 1 )(k+ 2 )(b) If the infinite series is not terminated, it will diverge atμ=±1, i.e. at
θ =0orθ=π. Because this should not happen the series needs to be
terminated which is possible only ifλ=k(k+1)
i.e.l(l+1);l= 0 , 1 , 2 ...Herelis known as the orbital angular momen-
tum quantum number. The resulting seriesP(μ) is then called Legendre
polynomial.3.3.3 PotentialWellsandBarriers .........................
3.18 (a) The term−(^2) d 2
2 mdx^2 is the kinetic energy operator,U(x) is the potential
energy operator,ψ(x) is the eigen function andEis the eigen value.
(b) PutU(x)=0 in the region 0<x <ain the Schrodinger equation to
obtain
(
−
^2
2 m)
d^2 ψ(x)
dx^2=Eψ(x)(1)