4.2 Problems 253
4.2.2 Maxwell’s Thermodynamic Relations ..............
4.21 Obtain Maxwell’s Thermodynamic Relations
(a)(
∂s
∂V)
T=
(
∂P
∂T
)
V
(b)(
∂s
∂P)
T=−
(
∂V
∂T
)
P4.22 Obtain Maxwell’s thermodynamic relation.
(
∂T
∂V
)
S=−
(
∂p
∂S)
V4.23 Obtain Maxwell’s thermodynamic relation.
(
∂T
∂P
)
S=
(
∂V
∂S
)
P4.24 Using Maxwell’s thermodynamic relations deduce Clausius Clapeyron equa-
tion(
∂p
∂T
)
saturation=
L
T(ν 2 −ν 1 )
where prefers to the saturation vapor pressure,Lis the latent heat,Tthe
temperature,ν 1 andν 2 are the specific volumes (volume per unit mass) of the
liquid and vapor, respectively.4.25 Calculate the latent heat of vaporization of water from the following data:
T= 373 .2K,ν 1 =1cm^3 ,ν 2 = 1 ,674 cm^3 ,dp/dT= 2 .71 cm of mercury
K−^1
4.26 Using the thermodynamic relation
(
∂s
∂V
)
T=
(
∂p
∂T)
V,
derive the Stefan-Boltzmann law of radiation.4.27 Use the thermodynamic relations to show that for an ideal gas
CP−CV=R.
4.28 For an imperfect gas, Vander Waal’s equation is obeyed
(
p+
a
V^2)
(V−b)=RTwith the approximationb/V1, show that
CP−CV∼=R(
1 +
2 a
RT V)
4.29 IfEis the isothermal bulk modulus,αthe coefficient of volume expansion
then show that
CP−CV=TEα^2 V