4.3 Solutions 275
whereHis the enthalpy
∴TΔS+VΔP= 0
But by Problem 4.31
TΔS=CPΔT−T
(
∂V
∂T
)
P
ΔP
∴CPΔT+
[
V−T
(
∂V
∂T
)
P
]
ΔP= 0
or ΔT=
[
T
(∂V
∂T
)
P−V
]
ΔP
CP
4.34 (a) For perfect gas
PV=RT
P
(
∂V
∂T
)
P
=R
T
(
∂V
∂T
)
P
=
TR
P
=V
orT
(
∂V
∂T
)
P
−V= 0
∴ΔT=0 by Problem 4.31
(b) For imperfect gas
(
P+
a
V^2
)
(V−b)=RT
orPV=RT−
a
V
+bP+
ab
V^2
P
(
∂V
∂T
)
P
=R+
a
V^2
(
∂V
∂T
)
P
−
2 ab
V^3
(
∂V
∂T
)
P
Re-arranging
(
∂V
∂T
)
P
=
R
P−Va 2 +^2 Vab 3
=
R
RT
V−b−
2 a
V^2
(
1 −Vb
)
Multiplying both numerator and denominator of RHS by (V−b)/R
T
(
∂V
∂T
)
P
=(V−b)
[
1 −
2 a
RT V^3
(V−b)^2
]− 1
=(V−b)
[
1 +
2 a
RT V^3
(V−b)^2