1000 Solved Problems in Modern Physics

(Grace) #1

4.3 Solutions 277


ES

ET

=

(∂P/∂V)S

(∂P/∂V)T

=

(∂P/∂V)S

(

∂T

∂V

)

S
(∂P/∂S)T

(

∂S

∂V

)

T

=

(∂T/∂V)S

(

∂S

∂P

)

T
(∂T/∂P)S

(

∂S

∂V

)

T

=

(∂P/∂S)V(∂V/∂T)P

(∂V/∂S)P(∂P/∂T)V

from the relations given in Problems 4.21 and 4.22


ES

ET

=

(∂S/∂T)P

(∂S/∂T)V

=

(∂Q/∂T)P

(∂Q/∂T)V

=

CP

CV


4.37

(∂V/∂T)S

(∂V/∂T)P

=

1

(∂T/∂V)S(∂V/∂T)P

=

1


(

∂P

∂S

)

V

(

∂V

∂T

)

P
where we have used Eq. (23) of Problem 4.22.
Writing
(
∂P
∂S

)

V

=

(

∂P

∂T

)

V

(

∂T

∂S

)

V

=

(∂P/∂T)V

(∂S/∂T)V

(∂V/∂T)S

(∂V/∂T)P

=

(∂S/∂T)V

(∂P/∂T)V(∂V/∂T)P

=

(∂S/∂T)V

−(CP−CV)/T

(by Eq. (4.1) of Problem 4.27

T(∂S/∂T)V
−(CP−CV)

=

CV

−(CP−CV)

=

1

1 −γ

4.38

(∂P/∂T)S

(∂P/∂T)V

=

1

(∂T/∂P)S(∂P/∂T)V

=

1

(

∂V

∂S

)

P

(

∂P

∂T

)

V

=

1

(

∂V

∂T

)

P

(

∂T

∂S

)

P

(

∂P

∂T

)

V

=

(∂S/∂T)P

(

∂V

∂T

)

P

(∂P/∂T)V

=

T(∂S/∂T)P

(CP−CV)

=

CP

(CP−CV)

=

γ
γ− 1

where we have used Eq. (4.24) of Problem 4.22 and the relation

CP=T

(

∂S

∂T

)

P
Free download pdf