1000 Solved Problems in Modern Physics

(Grace) #1

4.3 Solutions 283


orΔQ=TΔS=kTlnΔW
=(1. 38 × 10 −^23 )(300) ln 10^8
= 7. 626 × 10 −^20 J= 0 .477 eV

4.58 The Gaussian (normal) distribution is


f(x)=

1

σ


2 π

e−(x−μ)

(^2) / 2 σ 2
whereμis the mean andσis the standard deviation. The probability is found
from
(a)P(μ−σ<x<μ+σ)=
∫μ+σ
μ−σ
f(x)dx
Lettingz=x−σμ
P(− 1 <z<1)=


∫^1

− 1

φ(z)dz

= 2

∫ 1

0

φ(z)dz(from symmetry)

= 2 × 0. 3413 = 0 .6826 (from tables)
or 68.26%(shown shaded under the curve, Fig 4.4)

Fig. 4.4


(b) Similarly
P(μ− 2 σ)<x<μ+ 2 σ)= 0 .9544 or 95.44%
(c)P(μ− 3 σ)<x<(μ+ 3 σ)= 0 .9973 or 99.73%

4.59 P(n,T)=


e−

(n+^12 )ω
kT

Σ∞n= 0 e−

(n+^12 )ω
kT

=

e−(n+

(^12) )ω/kT
e−
(^12) ω/kT
Σ∞n= 1 enω/kT

Free download pdf