4.3 Solutions 283
orΔQ=TΔS=kTlnΔW
=(1. 38 × 10 −^23 )(300) ln 10^8
= 7. 626 × 10 −^20 J= 0 .477 eV
4.58 The Gaussian (normal) distribution is
f(x)=
1
σ
√
2 π
e−(x−μ)
(^2) / 2 σ 2
whereμis the mean andσis the standard deviation. The probability is found
from
(a)P(μ−σ<x<μ+σ)=
∫μ+σ
μ−σ
f(x)dx
Lettingz=x−σμ
P(− 1 <z<1)=
∫^1
− 1
φ(z)dz
= 2
∫ 1
0
φ(z)dz(from symmetry)
= 2 × 0. 3413 = 0 .6826 (from tables)
or 68.26%(shown shaded under the curve, Fig 4.4)
Fig. 4.4
(b) Similarly
P(μ− 2 σ)<x<μ+ 2 σ)= 0 .9544 or 95.44%
(c)P(μ− 3 σ)<x<(μ+ 3 σ)= 0 .9973 or 99.73%
4.59 P(n,T)=
e−
(n+^12 )ω
kT
Σ∞n= 0 e−
(n+^12 )ω
kT
=
e−(n+
(^12) )ω/kT
e−
(^12) ω/kT
Σ∞n= 1 enω/kT