4.3 Solutions 287
4.67 Power radiated,P=σAT^4 = 4 πR^2 σT^4
P 2
P 1
=
R^22
R^21
.
T 24
T 14
=
(4R 1 )^2
R^21
.
(2T 1 )^4
T 14
= 256
Furthermore,
P 2
P 1
=
dQ 2 /dt
dQ 1 /dt
=
m 2 s(dT/dt) 2
m 1 s(dT/dt) 1
wheresis the specific heat
Butm 2 ∝R 23 andm 1 ∝R^31
∴
(dT/dt) 2
(dT/dt) 1
=
P 2
P 1
.
R^31
R^32
=
256
43
= 4
4.68 (a)λm.T=b
T=
b
λm
=
2. 897 × 10 −^3
1 × 10 −^6
= 2 ,897 K
P 2
P 1
=
T 24
T 14
= 2
New temperature,T 2 =T 1 × 21 /^4 = 2 , 897 × 1. 189 = 3 ,445K
(b) The wavelength at which the radiation has maximum intensity
λm=
2. 897 × 10 −^3
3445
= 0. 84 × 10 −^6 m= 0. 84 μm
4.69 The mean value∈is determined from;
∈=
Σ∞n= 0 n∈e−βn∈
Σ∞n= 0 e−βn∈
=−
d
dβ
ln
∑∞
n= 0
e−βn∈
=−
d
dβ
ln
(
1 +e−β∈+e−^2 β∈+···
)
=−
d
dβ
ln
1
1 −e−β∈
where we have used the formula for the sum of terms of an infinite geometric
series.
∈=
∈e−β∈
1 −e−β∈
=
∈
eβ∈− 1
(β= 1 /kT)
4.70 (a)
uλdλ=
8 πhc
λ^5
.
1
ehc/λkT− 1
dλ (Planck’s formula) (1)
For long wavelengths (low frequencies) and high temperatures the ratio
hc
λkT1 so that we can expand the exponential in (1) and retain only the
first two terms
uλdλ=
8 πhc
λ^5 [(1+hc/λkT+...)−1]
=
8 πkT
λ^4
dλ
writingλ=cυ;dλ=−υc 2 dν