5.3 Solutions 305
5.18 σ=
ne^2 τ
m
n=
6. 02 × 1023 × 8. 88 × 106
63. 57
= 8. 38 × 1028 m−^3
σ=
8. 38 × 1028 ×(1. 6 × 10 −^19 )^2 × 2. 3 × 10 −^14
9. 11 × 10 −^31
= 5. 422 × 107 Ω−^1 m−^1
K=σCWFT=(5. 422 × 107 )(2. 31 × 10 −^8 )(300)=376 Wm−^1 K−^2
5.19 (a)σ=
1
ρ
=
1
1. 72 × 10 −^8
= 5. 8 × 107 Ω−^1 m−^1
(b)μ=RHσ=(0. 55 × 10 −^10 )(5. 8 × 107 )= 0 .0032 m^2 V−^1 s−^1
(c)τ=
μm
e
=
(0.0032)(9. 11 × 10 −^31 )
1. 6 × 10 −^19
= 1. 82 × 10 −^14 s
(d)n=
σ
eμ
=
5. 8 × 107
(1. 6 × 10 −^19 )(0.0032)
= 1. 13 × 1029 m−^3
5.20 (a)RH=
VHt
iB
=
(4. 5 × 10 −^6 )(2× 10 −^5 )
(1.5)(2)
= 0. 3 × 10 −^10 m^3 C
− 1
(b)n=
1
RHe
=
1
(0. 3 × 10 −^10 )(1. 6 × 10 −^19 )
= 2. 08 × 1029 m−^3
5.21 Integratingn(E)dEfrom zero toEF:
13. 6 × 1027
∫EF
0
E^1 /^2 dE= 8. 5 × 1028
E^3 F/^2 = 9. 375
OrEF= 4 .445 eV
5.22v=
√
2 E
m
=
√
2 × 4. 445 × 1. 6 × 10 −^19
9. 11 × 10 −^31
= 1. 25 × 106 m/s
5.23vF=
(
2 EF
mc^2
) 1 / 2
c=
(
2 × 5. 5
0. 511 × 106
) 1 / 2
(3× 108 )= 1. 39 × 106 m/s
Since each atom contributes one electron, the density of electrons is equal to
that of atoms.
n=
6. 02 × 1026 × 10. 5 × 103
108
= 5. 85 × 1028 e/m^3
Each atom occupies approximately a volumed^3. Therefore
d=
(
1
5. 85 × 1028
) 1 / 3
= 2. 576 × 10 −^10 m