1000 Solved Problems in Modern Physics

(Grace) #1

318 6 Special Theory of Relativity


Inverse transformations


cpx=γ(cp′x+βE′) (6.41)
cpy=cp′y (6.42)

cpz=cp′z (6.43)

E=γ(E

−βcp′x∗) (6.44)
E′^2 −c^2 p′^2 =E^2 −c^2 p^2 =m^20 =Invariant (6.45)
γ′=γγ 0 (1−ββ 0 cosθ 0 ) (6.46)
γ 0 =γγ′(1+ββ∗cosθ∗) (6.47)

where zeros refer to the particle’s velocity, Lorentz factor and the angle in the
S-system while primes refer to the corresponding quantities in theS′system.


Transformation of angles


tanθ′=

sinθ
γ

(

cosθ−ββ 0

) (6.48)

tanθ=

sinθ′
γc(cosθ′−β/β′)

(6.49)

Optical Doppler effect


ν′=γν(1−βcosθ) (6.50)

ν=γν′(1+βcosθ∗) (6.51)

whereνis the frequency in theS-systemandν′is the frequency in theS′-system,
θandθ′are the corresponding angles,βis the source velocity andγis the corre-
sponding Lorentz factor.


Threshold for particle production


Consider the reaction


m 1 +m 2 →m 3 +m 4 +M (6.52)

T(threshold)=

1

2 m 2

[(m 3 +m 4 +M)^2 −(m 1 +m 2 )^2 ]

T(threshold)=

(Sum of final masses)^2 −(sum of initial masses)^2
2 ×mass of target particle

(6.53)
Free download pdf