6.3 Solutions 353
Butγ= 10 / 0. 14
Therefore,φmin= 0 .028 rad or 1. 6 ◦
6.83 Rest mass energy ofω^0 =Total available energy – (total kinetic energy+
mass energy ofπ+andπ−)
mωc^2 = 2. 29 −(1. 22 + 0. 14 + 0 .14)= 0 .79 GeV
6.84 Energy conservation gives
m 1 γ 1 +m 2 =Mγ (1)
Momentum conservation gives
m 1 γ 1 β 1 =Mγβ (2)
Squaring (1)
m 12 γ 12 +m 22 + 2 γ 1 m 1 m 2 =M^2 γ^2 (3)
Squaring (2)
m 12 γ 12 β 12 =M^2 γ^2 β^2 (4)
Usingβ 1 =(1− 1 /γ 12 )^1 /^2 andβ=(1− 1 /γ^2 )^1 /^2
(4) becomes
m 12 (γ 12 −1)=M^2 (γ^2 −1) (5)
Subtracting (5) from (3)
m 12 +m 22 + 2 m 1 m 2 /(1−v^2 /c^2 )^1 /^2 =M^2
6.85 E
0 =Ep+Eπ (energy conservation) (1)
Q=m 0 −(mp+mπ)(2)
P 02 =Pp^2 +Pπ^2 + 2 PpPπcosθ (3)
OrE 02 −m 02 =Ep^2 −mp^2 +Eπ^2 −mπ^2 + 2 PpPπcosθ (4)
Using (1) in (4) and simplifying
2 EpEπ− 2 PpPπcosθ+mp^2 +mπ^2 =m 02 =(Q+mp+mπ)^2 (5)
OrQ=(mp^2 +mπ^2 + 2 EpEπ− 2 PpPπcosθ)^1 /^2 −(mp+mπ)(6)