6.3 Solutions 361
6.103 The angle between the twoγ-rays in the LS can be found fom the formula
m^2 c^4 =m 12 c^4 +m 22 c^4 +2(E 1 E 2 −c^2 p 1 p 2 cosφ)
Puttingm 1 =m 2 = 0 ,cp 1 =E 1 ,cp 2 =E 2
m^2 c^4 = 2 E 1 E 2 (1−cosφ)= 4 E 1 E 2 sin^2 (φ/2)
sin (φ/2)=mc^2 /2(E 1 E 2 )^1 /^2 (15)
6.104 For small angleφ,
φ=mc^2 /(E 1 E 2 )^1 /^2 (16)
SetE 2 =γmc^2 −E 1
φ=mc^2 /[E 1 (γmc^2 −E 1 )]^1 /^2 (17)
For minimum angle dφ/dE 1 =0. This givesE 1 =γmc^2 /2.
Using this value ofE 1 in (17), we obtain
φmin= 2 /γ (18)
Measurement ofφminaffords the determination ofEπviaγ.
φmin= 2 mc^2 /Eπ
6.105 E 1 +E 2 =E (energy conservation) (1)
p 1 +p 2 =p (momentum conservation) (2)
Taking the scalar product
(p 1 +p 2 ).(p 1 +p 2 )=p.p
or
p 12 +p 22 + 2 p 1 p 2 cosθ=p^2 (3)
Usingc=1, Eq. (3) becomes
E 12 +E 22 + 2 E 1 E 2 cosθ=E^2 −m^2 (4)
LetE 2 /E 1 =D, (5)
the disparity factor. Then (1) becomes
E 1 (D+1)=E (6)
Combining (4), (5) and (6)
2 DE^2 (1−cosθ)=m^2
Or sinθ/ 2 =[m/ 2 E][
√
D+ 1 /
√
D]
For smallθ,
θ=[m/E][