450 8 Nuclear Physics – II
U=
∫
dU=4 πρ^2
3 ε 0∫R
0r^4 dr=4 πρ^2 R^5
1. 5 ε 0=
3 z^2 e^2
20 πε 0 Rwhere we have substituted the value ofρ.8.8 Choose a point at distancer(<R) from the centre of the nucleus. Letq′be the
charge within the sphere of radiusr.
Thenq′=q(r
R) 3
The electric field will beE=q′
4 πε 0 r^2=
qr
4 πε 0 R^3The potentialV(r)=−∫
Edr=−∫ qr
4 πε 0 R^3+C
=−
qr^2
8 πε 0 R^3+C (1)
whereCis a constant.
Atr=R, the point is just on the surface and the potential will be given by
Coulomb’s law.V(R)=q
4 πε 0 R(2)
Using (2) in (1), the value ofCis determined asC=3
2
q
4 πε 0 Rand (1) becomesV(r)=q
8 πε 0 R(
3 −
r^2
R^2)
8.3.3 Nuclear Spin and Magnetic Moment ..............
8.9 The rotational kinetic energy is given byER=1
2
Iω^2 (1)whereERis the rotational energy,Ithe rotational inertia andωis the angular
velocity
The angular momentum is given byJ=Iω (2)Combining (1) and (2)ER=1
2
Jω