8.3 Solutions 475
Area of the unit cellA=πr 12
Now,
Σam
Σau=
Nm
Nu×
σam
σau=
ρm/Am
ρu/Au×
σam
σau=1. 62 / 12
18. 7 / 238
×
4. 5 × 10 −^3
7. 68
= 1. 01 × 10 −^3
Vm
Vu=
182 −π(1.5)^2
π(1.5)^2= 44. 8
φm
φu= 1. 6
Hence, f=1
1 +(1. 01 × 10 −^3 )× 44. 8 × 1. 6
= 0. 933
8.80 The equation for a critical reactor is
∇^2 φ+B^2 φ=0(1)
Whereφis the neutron flux andB^2 is the buckling.
For spherical geometry, Eq. (1) becomes
d^2 φ
dr^2+
2
rdφ
dr+B^2 φ=0(2)which has the solutionφ=A
rsin(πr/R)(3)whereAis the constant of integration andRis the radius of the bare reactor
dφ
dr=−
A
r^2sin(πr
R)
+
πA
Rrcos(
πr
R)
(4)
d^2 φ
dr^2=
2 A
r^3sin(
πr
R)
−
πA
Rr^2cos(πr
R)
−
Aπ^2
R^2 rsin(
πr
R)
(5)
Therefore (2) becomes−Aπ^2
dr^2sin(πr
R)
+
B^2 A
rsin(
πr
R)
= 0
Therefore,B^2 =π2
R^2
Or the critical radius,R=π
B(6)
B^2 =
k∞− 1
M^2=
1. 54 − 1
250
= 2. 16 × 10 −^3 cm−^2B= 0. 04647R=π
0. 04647=67 cm