482 8 Nuclear Physics – II
Σa(graphite)=1
λa(C)=
1
2 , 700
= 3. 7 × 10 −^4 cm−^1Σa=Σa(C)+Σa(B)=Σa(C)+σa(B)N
= 3. 7 × 10 −^4 + 755 × 10 −^24 N(1)λtr=λs
1 − 32 A=
2. 7
1 − 3 ×^212
= 2 .859 cm (2)The attenuation dependence ofe−^0.^03 ximplies that the diffusion lengthL=
1
0. 03
= 33 .33 cm (3)ButL^2 =λtrλa
3=
λtr
3 Σa(4)
Combining (1), (2), (3), and (4) and solving forN, we find
N= 5. 83 × 1017 boron atoms/cm^38.92 Refer to solution of Problem 8.84 with the change of notation.
v 12 =v 1 ∗^2 +vc^2 + 2 v 1 ∗vccosθ∗=v 02
(A+1)^2(A^2 + 1 + 2 Acosθ∗)where we have used the relationsv 1 ∗=AV 0 /(A+1) andvc=v 0 /(A+1)We can then write
E 1
E 0=
A^2 + 2 Acosθ∗+ 1
(A+1)^2<E 1 /E 0 >=1
(A+1)^2
∫+ 1
− 1(A^2 + 2 Acosθ∗+1)1
2
d(cos∗)=
(A^2 +1)
(A+1)^2
Therefore,<Ef>=Ei(A(^2) +1)
(A+1)^2
Let the neutron energy beEnafterncollisions
En
E 0
=
E 1
E 0
.
E 2
E 1
.
E 3
E 2
...
En
En− 1=
(
E 1
E 0
)nTherefore 20 ×.025 eV 106 eV=[
A^2 + 1
(A+1)^2]n
=( 145
169)nwhere we have putA=12 for graphite. Taking logarithm on both sides and
solving for n, we obtainn=119. Compare this value withn=115 obtained
from the average logarithmic decrement (Problem 8.85).