54 1 Mathematical Physics
1.48x^2 /^3 +y^2 /^3 =a^2 /^3 (1)
The arcABgenerates only one half of the surface.
Sx
2
= 2 π
∫b
a
y
[
1 +
(
dy
dx
) 2 ]^1 /^2
dx (2)
From (1) we find
dy
dx
=−
y^1 /^3
x^1 /^3
;y=
(
a
(^23)
−x
23 )^3 /^2
(3)
Substituting (3) in (2)
Sx
2
= 2 π
∫a
0
(a^2 /^3 −x^2 /^3 )
[
1 +
y^2 /^3
x^2 /^3
] 1 / 2
dx
= 2 π
∫a
0
(a^2 /^3 −x^2 /^3 )^3 /^2
(
a^2 /^3
x^2 /^3
) 1 / 2
dx
= 2 πa^1 /^3
∫a
0
(a^2 /^3 −x^2 /^3 )^3 /^2 x−^1 /^3 dx
=
6 πa^2
5
∴Sx=
12 πa^2
5
Fig. 1.13Curve of
hypocycloid
x^2 /^3 +y^2 /^3 =a^2 /^3
1.49
∫a
0
∫√a (^2) −x 2
0
(x+y)dydx=
∫a
0
[∫√
a^2 −x^2
0
(x+y)dy
]
dx
=
∫a
0
[(
xy+
y^2
2
)
dx
]√a (^2) −x 2
0
∫a
0
(
x
√
a^2 −x^2 +
a^2 −x^2
2
)
dx
=
2 a^3
3
1.50 Area to be calculated is
A=ACFD= 2 ×ABED