1.3 Solutions 65
d^4 y
dx^4
+
4d^2 y
dx^2
=−8 cos(2x)(2)
Multiply (1) by 4 and add to (2),
d^4 y
dx^4
+
8d^2 y
dx^2
+ 16 y= 0
D^4 + 8 D^2 + 16 = 0
(D^2 +4)^2 = 0
D=± 2 i
y=C 1 sin 2x+C 3 xsin 2x+C 2 cos 2x+C 4 xcos 2x
=U+C 3 xsin 2x+C 4 xcos 2x
=U+V
Y=V=C 3 xsin 2x+C 4 xcos 2x (3)
Use (3) in (1) and compare the coefficients of sin 2xand cos 2xto find
C 3 = 1 /2 andC 4 =0. Thus the complete solution is
y=C 1 sin 2x+C 2 cos 2x+
1
2
xsin 2x
1.69
dy
dx
+
3 y
x+ 2
=x+ 2
This equation is of the form
dy
dx
+yp(x)=Q(x)
withP=x+^32 andQ=x+ 2
The solution is obtained from
yexp
(∫
p(x)dx=
[∫
Q(x)exp
(∫
p(x)dx
)]
dx+C
Now
∫
p(x)dx= 3
∫
dx
x+ 2
=3ln(x+2)=ln(x+2)^3
∴yexp (ln(x+2)^3 )=
[∫
(x+2) exp (ln (x+2)^3 )
]
dx+C
y(x+2)^3 =
∫
(x+2)^4 dx+C
=
(x+2)^5
5
+C
ory=
(x+2)^2
5
+C
y=2 whenx=− 1
ThereforeC=^95
The complete solution is
y=
(x+2)^2
5
+
9
5
=
x^2 + 4 x+ 13
5