1.3 Solutions 71
1.80 Legendre’s equation is
(1−x^2 )
∂^2 Pn(x)
∂x^2
− 2 x
∂Pn(x)
∂x
+n(n+1)Pn(x)=0(1)
Putx=cosθ, Eq. (1) then becomes
sin^2 θ
∂^2 Pn
∂cos^2 θ
−2 cosθ
∂Pn
∂cosθ
+n(n+1)Pn=0(2)
For largen,n(n+1)→n^2 , and cosθ→1 for smallθ,
sin^2 θ
∂^2 Pn
∂cos^2 θ
− 2
∂Pn
∂cosθ
+n^2 Pn=0(3)
Now, Bessel’s equation of zero order is
x^2
d^2 J 0 (x)
dx^2
+x
d
dx
J 0 (x)+x^2 J 0 (x)=0(4)
Lettingx= 2 nsinθ/ 2 =nsinθ,in(4)forsmallθ, and noting that cosθ→
1, after simple manipulation we get
sin^2 θ
d^2 J 0 (nsinθ)
dcos^2 θ
− 2 d
dJ 0 (nsinθ)
dcosθ
+n^2 J 0 (nsinθ)=0(5)
Comparing (5) with (3), we conclude that
Pn(cosθ)→J 0 (nsinθ)
1.81 T(x,s)=(1− 2 sx+s^2 )−^1 /^2 =
∑
pl(x)sl
(1)
(a) Differentiate (1) with respect tos.
∂T
∂s
=(x−s)(1− 2 sx+s^2 )−
(^32)
=
∑
(x−s)(1− 2 sx+s^2 )−^1 pl(x)sl
=
∑
lpl(x)sl−^1
Multiply by (1− 2 sx+s^2 )
∑
(x−s)plsl=
∑
lplsl−^1 (1− 2 sx+s^2 )
Equate the coefficients ofsl
xpl−pl− 1 =(l+1)pl+ 1 − 2 xlpl+(l−1)pl− 1
or (l+1)pl+ 1 =(2l+1)xpl−lpl− 1