1.3 Solutions 73
∮cdz
(z−a)n= 2 πiifn= 1=0ifn> 1Method 2
By Cauchy’s integral formulaf(n)(a)=n!
2 πi∮
cf(z)
(z−a)n+^1dzIfn=2 andf(z)= 4 z^2 − 3 z+1, thenf′′(1)=8. Hence8 =
2!
2 πi∮
c4 z^2 − 3 z+ 1
(z−1)^3or∫
4 z^2 − 3 z+ 1
(z−1)^3= 8 πi1.85 z=3 is a pole of order 2 (double pole);
z=iandz=− 1 + 2 iare poles of order 1 (simple poles).
1.86 z=1 is a simple pole,z=−2 is a pole of order 2 or double pole.
Residue atz=1 is limz→ 1 (z−1){
1
(z−1)(z+2)^2}
=^19
Residue atz=−2 is limz→− (^2) ddz
{
(z+2)^2
(z−1)(z+2)^2}
=
d
dz^2{
1
z− 1}
=
2
(z−1)^2=
2
9
1.87 The singularity is atz= 2
Letz− 2 =U. Thenz= 2 +U.
ez
(z−1)^2=
e^2 +U
U^2=e^2.eU
U^2=e^2
U^2[
1 +U+
U^2
2!
+
U^3
3!
+···
]
=
e^2
(z−2)^2+
e^2
z− 2+
e^2
2!+
e^2 (z−2)
3!+
e^2 (z−2)^2
4!+···
The series converges for all values ofz = 21.88 Consider
∮
cdz
z^4 + 1 , whereCis the closed contour consisting of line from−R
toRand the semi-circleΓ, traversed in the counter clock-wise direction.
The poles forZ^4 + 1 = 0, arez =exp(πi/4), exp(3πi/4), exp(5πi/4),
exp(7πi/4). Only the poles exp(πi/4) and exp(3πi/4) lie within C. Using
L’Hospital’s rule