Science - USA (2022-02-04)

(Antfer) #1

MS/MS similarity scoring, biclustering, and
molecular networking were used to iden-
tify the unknownm/z347.19 metabolite. OS-
induced volatile emissions were collected
using polydimethylsiloxane (PDMS) tubing
from 650 MAGIC RILs planted in the main
MPI-CE glasshouse and analyzed by thermal
desorption–gas chromatography–mass spec-
trometry (TD-GC-MS).NaPPO1/2andNaBBL2
genes were elucidated by combining mQTL
analysis for herbivory-induced unknown
m/z347.19 and transcriptomics analysis of
the microarray and RNA-seq datasets of
OS-induced kinetics of WT and irMYC2and
irMYB8lines. The candidate genes were func-
tionally validated by VIGS and in vitro enzy-
matic assays usingE. coli–expressedNaPPO1,
NaPPO2, andNaBBL2with CP and (Z)-3-
hexenal. The CPH [CP-5–(Z)-3-hexenal] chem-
ical structure was characterized by NMR. CPH’s
resistance function againstEmpoascawas
tested by in vitro nonchoice assays with syn-
thesized CPH or by in planta choice assays
conducted with VIGS plants of EV,NaPPO1,
NaPPO2, andNaAT1. The biosynthetic path-
way of CPH was reconstituted inV. fabaand
S. chilenseby transiently coexpressingNaPPO1,
NaPPO2, andNaBBL2with CP and (Z)-3-
hexenal leaf infiltrations. The nonhost resist-
ance function of CPH againstEmpoascawas
further evaluated with the CPH-engineered
V. fabaandS. chilenseplants.


REFERENCES AND NOTES



  1. A. Kessler, A. Kalske, Plant Secondary Metabolite Diversity and
    Species Interactions.Annu. Rev. Ecol. Evol. Syst. 49 , 115– 138
    (2018). doi:10.1146/annurev-ecolsys-110617-062406

  2. P. Bednarek, A. Osbourn, Plant-microbe interactions: Chemical
    diversity in plant defense.Science 324 , 746–748 (2009).
    doi:10.1126/science.1171661; pmid: 19423814

  3. J. Fanet al.,Pseudomonas saxgenes overcome aliphatic
    isothiocyanate-mediated non-host resistance inArabidopsis.Science
    331 , 1185–1188 (2011). doi:10.1126/science.1199707; pmid: 21385714

  4. J. R. Peartet al., Ubiquitin ligase-associated protein SGT1 is
    required for host and nonhost disease resistance in plants.
    Proc. Natl. Acad. Sci. U.S.A. 99 , 10865–10869 (2002).
    doi:10.1073/pnas.152330599; pmid: 12119413

  5. K. H. Sohnet al., HopAS1 recognition significantly contributes
    to Arabidopsis nonhost resistance toPseudomonas syringae
    pathogens.New Phytol. 193 , 58–66 (2012). doi:10.1111/
    j.1469-8137.2011.03950.x; pmid: 22053875

  6. A. A. Agrawal, Induced responses to herbivory and increased
    plant performance.Science 279 , 1201–1202 (1998).
    doi:10.1126/science.279.5354.1201; pmid: 9469809

  7. R. Karban, I. T. Baldwin,Induced Responses to Herbivory
    (Univ. Chicago Press, 2007).

  8. R. Mülleret al., Differential effects of indole and aliphatic
    glucosinolates on lepidopteran herbivores.J. Chem. Ecol. 36 ,
    905 – 913 (2010). doi:10.1007/s10886-010-9825-z; pmid: 20617455

  9. C. Barth, G. Jander, Arabidopsis myrosinases TGG1 and TGG2
    have redundant function in glucosinolate breakdown and
    insect defense.Plant J. 46 , 549–562 (2006). doi:10.1111/
    j.1365-313X.2006.02716.x; pmid: 16640593

  10. A. Kessler, R. Halitschke, I. T. Baldwin, Silencing the jasmonate
    cascade: Induced plant defenses and insect populations.
    Science 305 , 665–668 (2004). doi:10.1126/science.1096931;
    pmid: 15232071

  11. M. Kallenbach, G. Bonaventure, P. A. Gilardoni, A. Wissgott,
    I. T. Baldwin, Empoasca leafhoppers attack wild tobacco plants
    in a jasmonate-dependent manner and identify jasmonate
    mutants in natural populations.Proc. Natl. Acad. Sci. U.S.A.
    109 , E1548–E1557 (2012). doi:10.1073/pnas.1200363109;
    pmid: 22615404
    12. A. Haywardet al., The leafcutter bee,Megachile rotundata, is
    more sensitive toN-cyanoamidine neonicotinoid and butenolide
    insecticides than other managed bees.Nat. Ecol. Evol. 3 , 1521– 1524
    (2019). doi:10.1038/s41559-019-1011-2; pmid: 31666734
    13. S. Alseekhet al., Domestication of Crop Metabolomes: Desired
    and Unintended Consequences.Trends Plant Sci. 26 , 650– 661
    (2021). doi:10.1016/j.tplants.2021.02.005; pmid: 33653662
    14. D. Li, I. T. Baldwin, E. Gaquerel, Navigating natural variation in
    herbivory-induced secondary metabolism in coyote tobacco
    populations using MS/MS structural analysis.Proc. Natl. Acad.
    Sci. U.S.A. 112 , E4147–E4155 (2015). doi:10.1073/
    pnas.1503106112; pmid: 26170304
    15. D. Li, S. Heiling, I. T. Baldwin, E. Gaquerel, Illuminating a
    plant’s tissue-specific metabolic diversity using computational
    metabolomics and information theory.Proc. Natl. Acad. Sci.
    U.S.A. 113 , E7610–E7618 (2016). doi:10.1073/pnas.1610218113;
    pmid: 27821729
    16. N. Onkokesunget al., MYB8 controls inducible phenolamide
    levels by activating three novel hydroxycinnamoyl-coenzyme A:
    polyamine transferases inNicotiana attenuata.Plant Physiol. 158 ,
    389 – 407 (2012). doi:10.1104/pp.111.187229; pmid: 22082505
    17. Y. Oh, I. T. Baldwin, I. Gális, NaJAZh regulates a subset
    of defense responses against herbivores and spontaneous leaf
    necrosis inNicotiana attenuataplants.Plant Physiol. 159 ,
    769 – 788 (2012). doi:10.1104/pp.112.193771; pmid: 22496510
    18. A. Chini, S. Gimenez-Ibanez, A. Goossens, R. Solano,
    Redundancy and specificity in jasmonate signalling.Curr. Opin.
    Plant Biol. 33 , 147–156 (2016). doi:10.1016/j.pbi.2016.07.005;
    pmid: 27490895
    19. I. T. Majoret al., Regulation of growth–defense balance by the
    JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module.
    New Phytol. 215 , 1533–1547 (2017). doi:10.1111/nph.14638;
    pmid: 28649719
    20. R. Liet al., Flower-specific jasmonate signaling regulates
    constitutive floral defenses in wild tobacco.Proc. Natl. Acad.
    Sci. U.S.A. 114 , E7205–E7214 (2017). doi:10.1073/
    pnas.1703463114; pmid: 28784761
    21. D. Li, R. Halitschke, I. T. Baldwin, E. Gaquerel, Information
    theory tests critical predictions of plant defense theory for
    specialized metabolism.Sci. Adv. 6 , eaaz0381 (2020).
    doi:10.1126/sciadv.aaz0381; pmid: 32577508
    22. D. Li, E. Gaquerel, Next-Generation Mass Spectrometry
    Metabolomics Revives the Functional Analysis of Plant
    Metabolic Diversity.Annu. Rev. Plant Biol. 72 , 867–891 (2021).
    doi:10.1146/annurev-arplant-071720-114836; pmid: 33781077
    23. M. Schäferet al.,NaMYB8regulates distinct, optimally
    distributed herbivore defense traits.J. Integr. Plant Biol. 59 ,
    844 – 850 (2017). doi:10.1111/jipb.12593; pmid: 28843024
    24. S. G. Kim, F. Yon, E. Gaquerel, J. Gulati, I. T. Baldwin, Tissue
    specific diurnal rhythms of metabolites and their regulation
    during herbivore attack in a native tobacco,Nicotiana
    attenuata.PLOS ONE 6 , e26214 (2011). doi:10.1371/
    journal.pone.0026214; pmid: 22028833
    25. K. Matsui, Green leaf volatiles: Hydroperoxide lyase pathway of
    oxylipin metabolism.Curr. Opin. Plant Biol. 9 , 274–280 (2006).
    doi:10.1016/j.pbi.2006.03.002; pmid: 16595187
    26. S. Allmann, R. Halitschke, R. C. Schuurink, I. T. Baldwin,
    Oxylipin channelling inNicotiana attenuata: Lipoxygenase 2
    supplies substrates for green leaf volatile production.
    Plant Cell Environ. 33 , 2028–2040 (2010). doi:10.1111/
    j.1365-3040.2010.02203.x; pmid: 20584148
    27. Y. Jooet al., Herbivory elicits changes in green leaf volatile
    production via jasmonate signaling and the circadian clock.
    Plant Cell Environ. 42 , 972–982 (2019). doi:10.1111/pce.13474;
    pmid: 30378135
    28. M.-A. McLarin, I. K. H. Leung, Substrate specificity of polyphenol
    oxidase.Crit. Rev. Biochem. Mol. Biol. 55 , 274–308 (2020).
    doi:10.1080/10409238.2020.1768209; pmid: 32441137
    29. K. Konno, C. Hirayama, H. Yasui, M. Nakamura, Enzymatic
    activation of oleuropein: A protein crosslinker used as a chemical
    defense in the privet tree.Proc. Natl. Acad. Sci. U.S.A. 96 ,
    9159 – 9164 (1999). doi:10.1073/pnas.96.16.9159; pmid: 10430912
    30. P. D. Sonawaneet al., Plant cholesterol biosynthetic pathway
    overlaps with phytosterol metabolism.Nat. Plants 3 , 16205
    (2016). doi:10.1038/nplants.2016.205; pmid: 28005066
    31. C. Y. Kimet al., The chloroalkaloid (−)-acutumine is
    biosynthesized via a Fe(II)- and 2-oxoglutarate-dependent
    halogenase in Menispermaceae plants.Nat. Commun. 11 , 1867
    (2020). doi:10.1038/s41467-020-15777-w; pmid: 32313070
    32. J. Reedet al., A translational synthetic biology platform for
    rapid access to gram-scale quantities of novel drug-like
    molecules.Metab. Eng. 42 , 185–193 (2017). doi:10.1016/
    j.ymben.2017.06.012; pmid: 28687337
    33. W. Lau, E. S. Sattely, Six enzymes from mayapple that complete
    the biosynthetic pathway to the etoposide aglycone.Science 349 ,
    1224 – 1228 (2015). doi:10.1126/science.aac7202; pmid: 26359402
    34. T. Boeckx, A. L. Winters, K. J. Webb, A. H. Kingston-Smith,
    Polyphenol oxidase in leaves: Is there any significance to the
    chloroplastic localization?J. Exp. Bot. 66 , 3571–3579 (2015).
    doi:10.1093/jxb/erv141; pmid: 25873687
    35. R. Marchiosiet al., Biosynthesis and metabolic actions of
    simple phenolic acids in plants.Phytochem. Rev. 19 , 865– 906
    (2020). doi:10.1007/s11101-020-09689-2
    36. T. Savchenkoet al., Functional convergence of oxylipin and
    abscisic acid pathways controls stomatal closure in response
    to drought.Plant Physiol. 164 , 1151–1160 (2014). doi:10.1104/
    pp.113.234310; pmid: 24429214
    37. F. F. Zenkner, M. Margis-Pinheiro, A. Cagliari, Nicotine
    Biosynthesis inNicotiana: A Metabolic Overview.Tob. Sci. 56 ,
    1 – 9 (2019). doi:10.3381/18-063
    38. J. Rajniak, B. Barco, N. K. Clay, E. S. Sattely, A new cyanogenic
    metabolite inArabidopsisrequired for inducible pathogen
    defence.Nature 525 , 376–379 (2015). doi:10.1038/
    nature14907; pmid: 26352477
    39. S.M.Cook,Z.R.Khan,J.A.Pickett,Theuseofpush-pullstrategiesin
    integrated pest management.Annu. Rev. Entomol. 52 , 375– 400
    (2007). doi:10.1146/annurev.ento.52.110405.091407; pmid: 16968206
    40. G. Zhuet al., Rewiring of the Fruit Metabolome in Tomato
    Breeding.Cell 172 , 249–261.e12 (2018). doi:10.1016/
    j.cell.2017.12.019; pmid: 29328914
    41. R. Sánchez-Pérezet al., Mutation of a bHLH transcription
    factor allowed almond domestication.Science 364 , 1095– 1098
    (2019). doi:10.1126/science.aav8197; pmid: 31197015
    42. J. Szymańskiet al., Analysis of wild tomato introgression lines
    elucidates the genetic basis of transcriptome and metabolome
    variation underlying fruit traits and pathogen response.Nat.
    Genet. 52 , 1111–1121 (2020). doi:10.1038/s41588-020-0690-6;
    pmid: 32989321
    43. S. Y. Xu, J.-K. Weng, Climate change shapes the future
    evolution of plant metabolism.Adv. Genet. 1 , e10022 (2020).
    doi:10.1002/ggn2.10022
    ACKNOWLEDGMENTS
    We thank B. Hong for technical support and fruitful discussions
    regarding CPH’s chemistry; J. Li for insightful discussions regarding
    insect treatments; V. Grabe and X. Jiang for microscopic support;
    Prescott College, Northern Arizona University, the Arboretum at
    Flagstaff, Prescott National Forest, and the Southwest Experimental
    Garden Array for the use of a field plot at the Walnut Creek Center for
    Education and Research; Brigham Young University for the use of
    its Lytle Ranch Preserve, where this work started; R. Carlson and
    N. Carlson for logistics support of the 2019 field team; G. Baldwin for
    support in sowing the MAGIC population and plant transformations;
    K. Gase for preparations of transformation constructs; the 2019
    MPI-CE field team (E. McGale, H. Valim, R. Ray, J. Li, P. Harary,
    C. Mahadevan, and M. Smith) for planting, screening, and oral
    secretion–eliciting the MAGIC population; R. Ray for help in preparing
    the eQTL dataset; C. Rocha for help with metabolite extractions
    and analyses; and J. Gershenzon and S. O’Connor for comments
    on an early draft of the manuscript.Funding:This work was
    supported by the Max Planck Society, advanced grant no. 293926
    of the European Research Council to I.T.B., and the Deutsche
    Forschungsgemeinschaft - SFB 1127/2 ChemBioSys–239748522 to
    I.T.B.Author contributions:Y.B., R.H., I.T.B., and D.L. conceived
    and designed the project. Y.B., C.Y., R.H., C.P., D.K., K.B., I.T.B., and
    D.L. performed experiments. Y.B., C.Y., C.P., E.G., I.T.B., and D.L.
    analyzed data. Y.B., I.T.B., and D.L. wrote the manuscript, with
    contributions from all authors.Competing interests:The authors
    have filed a patent (EP 21 217 268.8 and US 63/293,193) on CPH
    production and function. They declare no other competing interests.
    Data and materials availability:All data are available in the
    manuscript or the supplementary materials. Transformed lines are
    available from I.T.B.
    SUPPLEMENTARY MATERIALS
    science.org/doi/10.1126/science.abm2948
    Materials and Methods
    Figs. S1 to S29
    Tables S1 to S3
    References ( 44 – 73 )
    MDAR Reproducibility Checklist
    Data S1 to S3


7 September 2021; accepted 22 December 2021
10.1126/science.abm2948

Baiet al.,Science 375 , eabm2948 (2022) 4 February 2022 9of9


RESEARCH | RESEARCH ARTICLE

Free download pdf