in Eq.5.103the variable is the distance of the electron from the helium nucleus;ZH
andZHeare 1 and 2, respectively.
From Eq.5.100the two-electron contribution to each Fock matrix element is
Grs¼
Xm
t¼ 1
Xm
u¼ 1
Ptu ðrsjtsÞ#
1
2
ðrujtsÞ
ð 5 : 104 Þ
Each elementGrsis calculated from a density matrix elementPtu(Eqs.5.80
and5.81) and two two-electron integrals (rs|tu) and (ru|ts) (Eqs.5.73and5.77).
The required one-electron integrals for calculating the Fock matrixFare
T 11 ¼ 0 : 6249 T 12 ¼T 21 ¼ 0 : 2395 T 22 ¼ 1 : 1609
V 11 ðHÞ¼# 1 : 0300 V 12 ðHÞ¼V 21 ðHÞ¼# 0 : 4445 V 22 ðHÞ¼# 0 : 6563
V 11 ðHeÞ¼# 1 : 2555 V 12 ðHeÞ¼V 21 ðHeÞ¼# 1 : 1110 V 22 ðHeÞ¼# 2 : 8076
ð 5 : 105 Þ
To see which two-electron integrals are needed we evaluate the summation in
Eq.5.104for each of the matrix elements (G 11 ,G 12 ,G 21 ,G 22 ):
G 11 ¼
X^2
t¼ 1
X^2
u¼ 1
Ptu ð 11 jtuÞ#
1
2
ð 1 ujt 1 Þ
i.e: G 11 ¼
X^2
t¼ 1
Pt 1 ð 11 jt 1 Þ#
1
2
ð 11 jt 1 Þ
þPt 2 ð 11 jt 2 Þ#
1
2
ð 12 jt 1 Þ
¼P 11 ð 11 j 11 Þ#
1
2
ð 11 j 11 Þ
þP 12 ð 11 j 12 Þ#
1
2
ð 12 j 11 Þ
þP 21 ð 11 j 21 Þ#
1
2
ð 11 j 21 Þ
þP 22 ð 11 j 22 Þ#
1
2
ð 12 j 21 Þ
ð 5 : 106 Þ
G 12 ¼G 21 ¼
X^2
t¼ 1
X^2
u¼ 1
Ptu ð 12 jtuÞ#
1
2
ð 1 ujt 2 Þ
i:e: G 12 ¼G 21 ¼
X^2
t¼ 1
Pt 1 ð 12 jt 1 Þ#
1
2
ð 11 jt 2 Þ
þPt 2 ð 12 jt 2 Þ#
1
2
ð 12 jt 2 Þ
¼P 11 ð 12 j 11 Þ#
1
2
ð 11 j 12 Þ
þP 12 ð 12 j 12 Þ#
1
2
ð 12 j 12 Þ
þP 21 ð 12 j 21 Þ#
1
2
ð 11 j 22 Þ
þP 22 ð 12 j 22 Þ#
1
2
ð 12 j 22 Þ
ð 5 : 107 Þ
218 5 Ab initio Calculations