324 Constructions with the golden section
1.C 1 =A(B),
2.C 2 =B(A), intersectingC 1 atCandD,3.CDto intersectABat (their common midpoint)M,4.C 3 =A(M)to intersectC 2 atE,5.C 4 =E(A)to intersectC 3 atFandF′,Fcloser toMthenG′,6.EFand extend to intersectABatG.The pointGdivides the segmentABin the golden section.
A
BCDMEFF′GC 1 C 2C 3C 4Proof.By [1],FdividesF′Bin the golden section. SinceEFis parallel
toF′A,GdividesABin the golden section as well.
Remark.If the linesEF′andABintersect atG′, thenAdividesG′Bin
the golden section.