1982 BIBLIOGRAPHY
[12] A. T. Benjamin and J. J. Quinn, Recounting Fibonacci and Lucas
identities,College Math. Journal, 30 (1999) 359–366.[13] A. T. Benjamin and J. J. Quinn,Proofs that Really Count: The Art
of Combinatorial Proof, Math. Assoc. Math., forthcoming.[14] A. T. Benjamin and J. J. Quinn, The Fibonacci numbers – e[15] A. Bliss et al., Four constants in four 4s,Math. Mag., 74 (2001)
272.[16] A. Bourbeau, H. L. Nelson, et al., Problem 142,Crux Math.,2
(1976) 93; solution, 175–178, 3 (1977) 106–108.[17] A. L. Bouton,Annals of Math., ser. 2, 3 (1902) 33–59.[18] W. G. Brady and C. W. Twigg, Problem 232,Pi Mu Epsilon Jour-
nal, 5.2 (1969) 24; solution 5.3 (1970) 139.[19] I. Bruce, Another instance of the golden right triangle,Fibonacci
Quarterly, 32 (1994) 232–233.[20] M. Buckheimer and A. Arcavi, Farey series and Pick’s area for-
mula,Math. Intelligencer, 17:4 (1993) 64–67.[21] R. H. Buchholz and R. L. Rathbun, An infinite set of Heron tri-
angles with two rational medians,American Math. Monthly, 104
(1997) 107–115.[22] P. R. Buckland, The mathematical background of teachers in train-
ing,Math. Gazette, 53 (1969) 357–362.[23] S. Bulman-Fleming and E. T. H. Wang, Problem 1143, Crux
Math., 12 (1986) 107; solution, 13 (1987) 237–238.
[24] F. Burk, Natural logarithms via long division,College Math. Jour-
nal, 30 (1999) 309–310.[25] C. K. Caldwell, Truncatable primes, Journal of Recreational
Math., 19 (1987) 30–33.[26] C. K. Caldwell, Near repdigit primes,Journal of Recreational
Math., 21 (1988) 299–304; (1989) 101–109.[27] C. K. Caldwell and H. Dubner, The near-repunit primes(^1) n−k− 1011 k,Journal of Recreational Math., 27 (1995) 35–41.