xvi Contents
42
42
43
43
43
44
44
44
44
45
45
45
45
46
46
47
47
47
48
49
51
51
51
52
52
53
54
54
54
55
55
55
56
56
Fluctuations
4.89.
4.90.
4.91.
4.92.
4.93.
4.94.
4.95.
4.96.
Applications toSolid State
4.97.
4.98.
4.99.
4.100.
4.101.
4.102.
4.103.
4.104.
4.105.
4.106.
5.Quantum Mechanics
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
Magnetization Fluctuation (Stony Brook)
Gas Fluctuations (Moscow Phys-Tech)
Quivering Mirror (MIT, Rutgers, Stony Brook)
Isothermal Compressibility and Mean Square Fluctuation
(Stony Brook)
Energy Fluctuation in Canonical Ensemble (Colorado,
Stony Brook)
Number Fluctuations (Colorado (a,b), Moscow
Phys-Tech (c))
Wiggling Wire (Princeton)
LC Voltage Noise (MIT, Chicago)
Thermal Expansion and Heat Capacity(Princeton)
Schottky Defects (Michigan State, MIT)
Frenkel Defects (Colorado, MIT)
Two-Dimensional Debye Solid (Columbia, Boston)
Einstein Specific Heat (Maryland, Boston)
Gas Adsorption (Princeton, MIT, Stanford)
Thermionic Emission (Boston)
Electrons and Holes (Boston, Moscow Phys-Tech)
Adiabatic Demagnetization (Maryland)
CriticalField in Superconductor (Stony Brook, Chicago)
One-DimensionalPotentials
Shallow Square Well I (Columbia)
Shallow Square Well II (Stony Brook)
Attractive Delta Function Potential I (Stony Brook)
Attractive Delta Function Potential II (Stony Brook)
Two Delta FunctionPotentials (Rutgers)
Transmission Through a Delta Function Potential
(Michigan State, MIT, Princeton)
Delta Function in a Box (MIT)
Particle in Expanding Box (Michigan State, MIT, Stony
Brook)
One-Dimensional Coulomb Potential (Princeton)
Two Electrons in a Box (MIT)
Square Well (MIT)
Given the Eigenfunction (Boston, MIT)