Science - USA (2022-02-11)

(Antfer) #1

saturation, and original image for brightness.
The output images were inverted for better
visualization of the results.


Reanalysis of previously published RNA-seq data


Previously published bulk and single-cell RNA-
seq datasets for oocytes and preimplantation
embryos from mice (GSE44183) ( 97 ), cows
(GSE52415) ( 98 ), pigs (GSE139512) ( 101 ), and
humans (GSE44183, GSE101571, GSE133856,
and GSEE154762) ( 97 , 99 , 100 , 102 )weredown-
loaded from the Gene Expression Omnibus
(NIH). To compare gene expression levels be-
tween different samples from the same data-
set, reads per kilobase of transcript per million
reads mapped (RPKM) and fragments per
kilobase of transcript per million reads mapped
(FPKM) were converted into transcripts per
million (TPM). TPM has been shown to better
represent transcript abundance at the gene
level than RPKM and FPKM because it re-
spects the invariance property and is pro-
portional to the average relative RNA molar
concentration of the transcript in a sample
( 139 , 140 ).


Quantification of fluorescence recovery after
photobleaching experiments


Minor temporal drift was corrected using Rigid
registration in Icy. Mean intensities of photo-
bleached areas over time were exported from
Fiji into Excel for further processing. Data were
first corrected for background by subtracting
the intensity of an area outside the oocytes.
Background-corrected data were then nor-
malized to the intensity of prebleached time
points (F 0 ). Plots of intensity (F) against time
were fitted to single exponential functions
[F(t)=c−F∞e−t/t, wherecis the offset,F∞is
the amplitude of maximum intensity recov-
ered after equilibrium, andtis the time con-
stant] in OriginPro. Half-times of maximum
recovery (t1/2) and mobile fractions were deter-
mined byt× ln(2) andF∞/(F 0 −−F′) (whereF′
is the minimum intensity measured immedi-
ately after photobleaching), respectively.


Statistical analysis


No statistical methods were used to predeter-
mine sample size. The experiments were not
randomized. The investigators were not blinded
to allocation during experiments and outcome
assessment. Average (mean) and SD were cal-
culated in Excel. Statistical significance is based
on unpaired, two-tailed Student’sttest (for
absolute values) and two-tailed Fisher’s exact
test (for categorical values), which were calcu-
lated in Prism (GraphPad), assuming normal
distribution and similar variance. All box plots
show median (horizontal black line), mean
(small black squares), 25th and 75th percentiles
(boxes), 5th and 95th percentiles (whiskers),
and 1st and 99th percentiles (crosses). All data
are from at least two independent experi-


ments.Pvalues are designated as *P< 0.05,
**P< 0.01, ***P< 0.001, and ****P< 0.0001.
Nonsignificant values are indicated as N.S.

REFERENCESANDNOTES


  1. J. R. Gruhnet al., Chromosome errors in human eggs shape
    natural fertility over reproductive life span.Science 365 ,
    1466 – 1469 (2019). doi:10.1126/science.aav7321;
    pmid: 31604276

  2. Z. Holubcová, M. Blayney, K. Elder, M. Schuh, Error-prone
    chromosome-mediated spindle assembly favors chromosome
    segregation defects in human oocytes.Science 348 ,
    1143 – 1147 (2015). doi:10.1126/science.aaa9529;
    pmid: 26045437

  3. J. Haverfieldet al., Tri-directional anaphases as a novel
    chromosome segregation defect in human oocytes.Hum.
    Reprod. 32 , 1293–1303 (2017). doi:10.1093/humrep/
    dex083; pmid: 28449121

  4. A. H. Sathananthanet al., Centrioles in the beginning of
    human development.Proc. Natl. Acad. Sci. U.S.A. 88 ,
    4806 – 4810 (1991). doi:10.1073/pnas.88.11.4806;
    pmid: 2052559

  5. M. Plachot, N. Crozet, Fertilization abnormalities in human
    in-vitro fertilization.Hum. Reprod. 7 , 89–94 (1992).
    doi:10.1093/humrep/7.suppl_1.89; pmid: 1447374

  6. H. Balakier, Tripronuclear human zygotes: The first cell cycle
    and subsequent development.Hum. Reprod. 8 , 1892– 1897
    (1993). doi:10.1093/oxfordjournals.humrep.a137955;
    pmid: 8288756

  7. A. H. Sathananthanet al., The sperm centriole: Its
    inheritance, replication and perpetuation in early human
    embryos.Hum. Reprod. 11 , 345–356 (1996). doi:10.1093/
    HUMREP/11.2.345; pmid: 8671223

  8. M. Moomjy, L. T. Colombero, L. L. Veeck, Z. Rosenwaks,
    G. D. Palermo, Sperm integrity is critical for normal mitotic
    division and early embryonic development.Mol. Hum. Reprod.
    5 , 836–844 (1999). doi:10.1093/molehr/5.9.836;
    pmid: 10460222

  9. Y. F. Gu, G. Lin, C. F. Lu, G. X. Lu, Analysis of the first mitotic
    spindles in human in vitro fertilized tripronuclear zygotes
    after pronuclear removal.Reprod. Biomed. Online 19 ,
    745 – 754 (2009). doi:10.1016/j.rbmo.2009.09.013;
    pmid: 20021725

  10. Y. Kai, K. Iwata, Y. Iba, Y. Mio, Diagnosis of abnormal human
    fertilization status based on pronuclear origin and/or
    centrosome number.J. Assist. Reprod. Genet. 32 , 1589– 1595
    (2015). doi:10.1007/s10815-015-0568-1; pmid: 26395191

  11. Y. F. Guet al., Abnormalities in centrosome number in
    human embryos and embryonic stem cells.Mol. Reprod.
    Dev. 83 , 392–404 (2016). doi:10.1002/mrd.22633;
    pmid: 26946049

  12. Y. Kai, H. Moriwaki, K. Yumoto, K. Iwata, Y. Mio, Assessment
    of developmental potential of human single pronucleated
    zygotes derived from conventional in vitro fertilization.J.
    Assist. Reprod. Genet. 35 , 1377–1384 (2018). doi:10.1007/
    s10815-018-1241-2; pmid: 29959619

  13. E. Fordet al., The first mitotic division of the human embryo
    is highly error-prone.bioRxiv2020.2007.2017.208744
    [Preprint] (2020); .doi:10.1101/2020.07.17.208744

  14. Y. Kai, H. Kawano, N. Yamashita, First mitotic spindle
    formation is led by sperm centrosome-dependent MTOCs in
    humans.Reproduction 161 , V19–V22 (2021). doi:10.1530/
    REP-21-0061; pmid: 33843613

  15. S. Santaguida, A. Amon, Short- and long-term effects of
    chromosome mis-segregation and aneuploidy.Nat. Rev. Mol.
    Cell Biol. 16 , 473–485 (2015). doi:10.1038/nrm4025;
    pmid: 26204159

  16. P. T. Conduit, A. Wainman, J. W. Raff, Centrosome function
    and assembly in animal cells.Nat. Rev. Mol. Cell Biol. 16 ,
    611 – 624 (2015). doi:10.1038/nrm4062; pmid: 26373263

  17. P. Meraldi, Centrosomes in spindle organization and
    chromosome segregation: A mechanistic view.Chromosome
    Res. 24 , 19–34 (2016). doi:10.1007/s10577-015-9508-2;
    pmid: 26643311

  18. H. Maiato, E. Logarinho, Mitotic spindle multipolarity without
    centrosome amplification.Nat. Cell Biol. 16 , 386–394 (2014).
    doi:10.1038/ncb2958; pmid: 24914434

  19. D. Szollosi, P. Calarco, R. P. Donahue, Absence of centrioles
    in the first and second meiotic spindles of mouse oocytes.
    J. Cell Sci. 11 , 521–541 (1972). doi:10.1242/jcs.11.2.521;
    pmid: 5076360
    20. A. H. Sathananthan, Ultrastructural changes during meiotic
    maturation in mammalian oocytes: Unique aspects of the
    human oocyte.Microsc. Res. Tech. 27 , 145–164 (1994).
    doi:10.1002/jemt.1070270208; pmid: 8123907
    21. G. Manandhar, H. Schatten, P. Sutovsky, Centrosome
    reduction during gametogenesis and its significance.Biol.
    Reprod. 72 ,2–13 (2005). doi:10.1095/
    biolreprod.104.031245; pmid: 15385423
    22. M. Hatsumi, S. A. Endow, Mutants of the microtubule motor
    protein, nonclaret disjunctional, affect spindle structure and
    chromosome movement in meiosis and mitosis.J. Cell Sci.
    101 , 547–559 (1992). doi:10.1242/jcs.101.3.547;
    pmid: 1522143
    23. H. J. Matthies, H. B. McDonald, L. S. Goldstein, W. E. Theurkauf,
    Anastral meiotic spindle morphogenesis: Role of the non-claret
    disjunctional kinesin-like protein.J. Cell Biol. 134 , 455– 464
    (1996). doi:10.1083/jcb.134.2.455; pmid: 8707829
    24. R. Healdet al., Self-organization of microtubules into bipolar
    spindles around artificial chromosomes inXenopusegg
    extracts.Nature 382 , 420–425 (1996). doi:10.1038/
    382420a0; pmid: 8684481
    25. R. Heald, R. Tournebize, A. Habermann, E. Karsenti, A. Hyman,
    Spindle assembly inXenopusegg extracts: Respective roles
    of centrosomes and microtubule self-organization.J. Cell Biol.
    138 , 615–628 (1997). doi:10.1083/jcb.138.3.615;
    pmid: 9245790
    26. K. P. McNally, F. J. McNally, The spindle assembly function of
    Caenorhabditis eleganskatanin does not require microtubule-
    severing activity.Mol. Biol. Cell 22 , 1550–1560 (2011).
    doi:10.1091/mbc.e10-12-0951; pmid: 21372175
    27. A. A. Connollyet al.,Caenorhabditis elegansoocyte meiotic
    spindle pole assembly requires microtubule severing and
    the calponin homology domain protein ASPM-1.Mol. Biol. Cell
    25 , 1298–1311 (2014). doi:10.1091/mbc.e13-11-0687;
    pmid: 24554763
    28. S. J. Radford, A. M. M. Go, K. S. McKim, Cooperation between
    kinesin motors promotes spindle symmetry and chromosome
    organization in oocytes.Genetics 205 , 517–527 (2017).
    doi:10.1534/genetics.116.194647; pmid: 27932541
    29. G. Cavin-Meza, M. M. Kwan, S. M. Wignall, Multiple motors
    cooperate to establish and maintain acentrosomal spindle
    bipolarity inC. elegansoocyte meiosis.bioRxiv
    2021.2009.2009.459640 [Preprint] (2021); doi:10.1101/
    2021.09.09.459640
    30. M. Schuh, J. Ellenberg, Self-organization of MTOCs replaces
    centrosome function during acentrosomal spindle assembly
    in live mouse oocytes.Cell 130 , 484–498 (2007).
    doi:10.1016/j.cell.2007.06.025; pmid: 17693257
    31. C. Soet al., A liquid-like spindle domain promotes acentrosomal
    spindle assembly in mammalian oocytes.Science 364 , eaat9557
    (2019). doi:10.1126/science.aat9557; pmid: 31249032
    32. X. Guo, S. Gao, Pins homolog LGN regulates meiotic spindle
    organization in mouse oocytes.Cell Res. 19 , 838– 848
    (2009). doi:10.1038/cr.2009.54; pmid: 19434098
    33. A. Kolano, S. Brunet, A. D. Silk, D. W. Cleveland, M. H. Verlhac,
    Error-prone mammalian female meiosis from silencing the
    spindle assembly checkpoint without normal interkinetochore
    tension.Proc. Natl. Acad. Sci. U.S.A. 109 , E1858–E1867 (2012).
    doi:10.1073/pnas.1204686109; pmid: 22552228
    34. D. Clift, M. Schuh, A three-step MTOC fragmentation
    mechanism facilitates bipolar spindle assembly in mouse
    oocytes.Nat. Commun. 6 , 7217 (2015). doi:10.1038/
    ncomms8217; pmid: 26147444
    35. A. Z. Balboulaet al., Haspin kinase regulates microtubule-
    organizing center clustering and stability through Aurora kinase
    C in mouse oocytes.J. Cell Sci. 129 , 3648–3660 (2016).
    doi:10.1242/jcs.189340; pmid: 27562071
    36. Y. H. Kim, I. W. Lee, Y. J. Jo, N. H. Kim, S. Namgoong, Acentriolar
    microtubule organization centers and Ran-mediated
    microtubule formation pathways are both required in porcine
    oocytes.Mol. Reprod. Dev. 86 , 972–983 (2019). doi:10.1002/
    mrd.23172; pmid: 31136049
    37. J. Lee, T. Miyano, R. M. Moor, Spindle formation and
    dynamics ofg-tubulin and nuclear mitotic apparatus protein
    distribution during meiosis in pig and mouse oocytes.Biol.
    Reprod. 62 , 1184–1192 (2000). doi:10.1095/
    biolreprod62.5.1184; pmid: 10775165
    38. M. R. Shin, N. H. Kim, Maternal gamma (g)-tubulin is involved
    in microtubule reorganization during bovine fertilization
    and parthenogenesis.Mol. Reprod. Dev. 64 , 438–445 (2003).
    doi:10.1002/mrd.10280; pmid: 12589656
    39. C. Alvarez Sedó, H. Schatten, C. M. Combelles, V. Y. Rawe,
    The nuclear mitotic apparatus (NuMA) protein: Localization


Soet al.,Science 375 , eabj3944 (2022) 11 February 2022 17 of 19


RESEARCH | RESEARCH ARTICLE

Free download pdf