Science - USA (2022-02-11)

(Antfer) #1
human preimplantation development.Cell Stem Cell 25 ,
697 – 712.e6 (2019). doi:10.1016/j.stem.2019.09.004;
pmid: 31588047


  1. Q. Konget al., Lineage specification and pluripotency
    revealed by transcriptome analysis from oocyte to blastocyst
    in pig.FASEB J. 34 , 691–705 (2020). doi:10.1096/
    fj.201901818RR; pmid: 31914626

  2. R. Yanet al., Decoding dynamic epigenetic landscapes in
    human oocytes using single-cell multi-omics sequencing.
    Cell Stem Cell 28 , 1641–1656.e7 (2021). doi:10.1016/
    j.stem.2021.04.012; pmid: 33957080

  3. I. Bennabiet al., Shifting meiotic to mitotic spindle assembly
    in oocytes disrupts chromosome alignment.EMBO Rep. 19 ,
    368 – 381 (2018). doi:10.15252/embr.201745225;
    pmid: 29330318

  4. V. Mountainet al., The kinesin-related protein, HSET,
    opposes the activity of Eg5 and cross-links microtubules in
    the mammalian mitotic spindle.J. Cell Biol. 147 , 351– 366
    (1999). doi:10.1083/jcb.147.2.351; pmid: 10525540

  5. Y. Caoet al., Microtubule minus-end binding protein
    CAMSAP2 and kinesin-14 motor KIFC3 control dendritic
    microtubule organization.Curr. Biol. 30 , 899–908.e6 (2020).
    doi:10.1016/j.cub.2019.12.056; pmid: 32084403

  6. Z. Y. She, W. X. Yang, Molecular mechanisms of kinesin-14
    motors in spindle assembly and chromosome segregation.
    J. Cell Sci. 130 , 2097–2110 (2017). doi:10.1242/jcs.200261;
    pmid: 28668932

  7. S. Cai, L. N. Weaver, S. C. Ems-McClung, C. E. Walczak,
    Kinesin-14 family proteins HSET/XCTK2 control spindle
    length by cross-linking and sliding microtubules.Mol. Biol.
    Cell 20 , 1348–1359 (2009). doi:10.1091/mbc.e08-09-0971;
    pmid: 19116309

  8. C. E. Walczak, S. Verma, T. J. Mitchison, XCTK2: A kinesin-
    related protein that promotes mitotic spindle assembly in
    Xenopus laevisegg extracts.J. Cell Biol. 136 , 859– 870
    (1997). doi:10.1083/jcb.136.4.859; pmid: 9049251

  9. T. J. Mullen, S. M. Wignall, Interplay between microtubule
    bundling and sorting factors ensures acentriolar spindle
    stability duringC. elegansoocyte meiosis.PLOS Genet. 13 ,
    e1006986 (2017). doi:10.1371/journal.pgen.1006986;
    pmid: 28910277

  10. C. H. Chuang, A. J. Schlientz, J. Yang, B. Bowerman,
    Microtubule assembly and pole coalescence: Early steps in
    Caenorhabditis elegansoocyte meiosis I spindle assembly.
    Biol. Open 9 , bio.052308 (2020). doi:10.1242/bio.052308;
    pmid: 32493729

  11. C. E. Walczak, I. Vernos, T. J. Mitchison, E. Karsenti, R. Heald,
    A model for the proposed roles of different microtubule-
    based motor proteins in establishing spindle bipolarity.
    Curr. Biol. 8 , 903–913 (1998). doi:10.1016/S0960-9822(07)
    00370-3; pmid: 9707401

  12. S. Morales-Mulia, J. M. Scholey, Spindle pole organization in
    DrosophilaS2 cells by dynein, abnormal spindle protein
    (Asp), and KLP10A.Mol. Biol. Cell 16 , 3176–3186 (2005).
    doi:10.1091/mbc.e04-12-1110; pmid: 15888542

  13. G. Goshima, F. Nédélec, R. D. Vale, Mechanisms for focusing
    mitotic spindle poles by minus end-directed motor proteins.
    J. Cell Biol. 171 , 229–240 (2005). doi:10.1083/
    jcb.200505107; pmid: 16247025

  14. J. Baumbach, Z. A. Novak, J. W. Raff, A. Wainman, Dissecting
    the function and assembly of acentriolar microtubule
    organizing centers inDrosophilacells in vivo.PLOS Genet. 11 ,
    e1005261 (2015). doi:10.1371/journal.pgen.1005261;
    pmid: 26020779

  15. M. Kwonet al., Mechanisms to suppress multipolar divisions
    in cancer cells with extra centrosomes.Genes Dev. 22 ,
    2189 – 2203 (2008). doi:10.1101/gad.1700908;
    pmid: 18662975

  16. J. Kleylein-Sohnet al., Acentrosomal spindle organization
    renders cancer cells dependent on the kinesin HSET.J. Cell
    Sci. 125 , 5391–5402 (2012). doi:10.1242/jcs.107474;
    pmid: 22946058

  17. N. Kim, K. Song, KIFC1 is essential for bipolar spindle
    formation and genomic stability in the primary human
    fibroblast IMR-90 cell.Cell Struct. Funct. 38 , 21–30 (2013).
    doi:10.1247/csf.12014; pmid: 23318213
    118. P. L. Chavaliet al., A CEP215-HSET complex links
    centrosomes with spindle poles and drives centrosome
    clustering in cancer.Nat. Commun. 7 , 11005 (2016).
    doi:10.1038/ncomms11005; pmid: 26987684
    119. B. Vitreet al., IFT proteins interact with HSET to promote
    supernumerary centrosome clustering in mitosis.EMBO Rep.
    21 , e49234 (2020). doi:10.15252/embr.201949234;
    pmid: 32270908
    120. E. A. Nigg, Centrosome aberrations: Cause or consequence of
    cancer progression?Nat. Rev. Cancer 2 , 815–825 (2002).
    doi:10.1038/nrc924; pmid: 12415252
    121. J. Fu, I. M. Hagan, D. M. Glover, The centrosome and its
    duplication cycle.Cold Spring Harb. Perspect. Biol. 7 ,
    a015800 (2015). doi:10.1101/cshperspect.a015800;
    pmid: 25646378
    122. T. Yaoet al., Live-cell imaging of nuclear-chromosomal
    dynamics in bovine in vitro fertilised embryos.Sci. Rep. 8 ,
    7460 (2018). doi:10.1038/s41598-018-25698-w;
    pmid: 29748644
    123. T. Cavazzaet al., Parental genome unification is highly error-
    prone in mammalian embryos.Cell 184 , 2860–2877.e22
    (2021). doi:10.1016/j.cell.2021.04.013; pmid: 33964210
    124. I. Schneider, M. de Ruijter-Villani, M. J. Hossain, T. A. E. Stout,
    J. Ellenberg, Dual spindles assemble in bovine zygotes
    despite the presence of paternal centrosomes.J. Cell Biol.
    220 , e202010106 (2021). doi:10.1083/jcb.202010106;
    pmid: 34550316
    125. A. I. Mihajlović, J. Haverfield, G. FitzHarris, Distinct classes
    of lagging chromosome underpin age-related oocyte
    aneuploidy in mouse.Dev. Cell 56 , 2273–2283.e3 (2021).
    doi:10.1016/j.devcel.2021.07.022; pmid: 34428397
    126. J. Roeles, G. Tsiavaliaris, Actin-microtubule interplay
    coordinates spindle assembly in human oocytes.Nat.
    Commun. 10 , 4651 (2019). doi:10.1038/s41467-019-12674-9;
    pmid: 31604948
    127. B. T. Bajaret al., Improving brightness and photostability of
    green and red fluorescent proteins for live cell imaging and
    FRET reporting.Sci. Rep. 6 , 20889 (2016). doi:10.1038/
    srep20889; pmid: 26879144
    128. G. H. Patterson, J. Lippincott-Schwartz, A photoactivatable
    GFP for selective photolabeling of proteins and cells.
    Science 297 , 1873–1877 (2002). doi:10.1126/science.1074952;
    pmid: 12228718
    129. D. S. Bindelset al., mScarlet: A bright monomeric red
    fluorescent protein for cellular imaging.Nat. Methods 14 ,
    53 – 56 (2017). doi:10.1038/nmeth.4074; pmid: 27869816
    130. E. R. Liman, J. Tytgat, P. Hess, Subunit stoichiometry of a
    mammalian K+channel determined by construction of
    multimeric cDNAs.Neuron 9 , 861–871 (1992). doi:10.1016/
    0896-6273(92)90239-A; pmid: 1419000
    131. Q. Zhanget al., Nudel promotes axonal lysosome clearance
    and endo-lysosome formation via dynein-mediated transport.
    Traffic 10 , 1337–1349 (2009). doi:10.1111/j.1600-
    0854.2009.00945.x; pmid: 19522757
    132. S. Pfender, V. Kuznetsov, S. Pleiser, E. Kerkhoff, M. Schuh,
    Spire-type actin nucleators cooperate with Formin-2 to drive
    asymmetric oocyte division.Curr. Biol. 21 , 955–960 (2011).
    doi:10.1016/j.cub.2011.04.029; pmid: 21620703
    133. D.Clift,C.So,W.A.McEwan,L.C.James,M.Schuh,Acute
    and rapid degradation of endogenous proteins by Trim-
    Away.Nat. Protoc. 13 , 2149–2175 (2018). doi:10.1038/
    s41596-018-0028-3; pmid: 30250286
    134. S. Hua, K. Jiang, Expression and purification of microtubule-
    associated proteins from HEK293T cells for in vitro
    reconstitution.Methods Mol. Biol. 2101 , 19–26 (2020).
    doi:10.1007/978-1-0716-0219-5_2; pmid: 31879895
    135. J. Bucevičius, G. Kostiuk, R. Gerasimaitė, T. Gilat,
    G. Lukinavičius, Enhancing the biocompatibility of rhodamine
    fluorescent probes by a neighbouring group effect.Chem.
    Sci. 11 , 7313–7323 (2020). doi:10.1039/D0SC02154G;
    pmid: 33777348
    136. N. Tanaka, W. Meng, S. Nagae, M. Takeichi, Nezha/CAMSAP3
    and CAMSAP2 cooperate in epithelial-specific organization
    of noncentrosomal microtubules.Proc. Natl. Acad. Sci. U.S.A.
    109 , 20029–20034 (2012). doi:10.1073/pnas.1218017109;
    pmid: 23169647
    137. A. Z. Politiet al., Quantitative mapping of fluorescently
    tagged cellular proteins using FCS-calibrated four-
    dimensional imaging.Nat. Protoc. 13 , 1445–1464 (2018).
    doi:10.1038/nprot.2018.040; pmid: 29844523
    138. N. L. Schieberet al., Minimal resin embedding of multicellular
    specimens for targeted FIB-SEM imaging.Methods Cell Biol.
    140 , 69–83 (2017). doi:10.1016/bs.mcb.2017.03.005;
    pmid: 28528642
    139. B. Li, C. N. Dewey, RSEM: Accurate transcript quantification
    from RNA-Seq data with or without a reference genome.
    BMC Bioinformatics 12 , 323 (2011). doi:10.1186/
    1471-2105-12-323; pmid: 21816040
    140. G. P. Wagner, K. Kin, V. J. Lynch, Measurement of mRNA
    abundance using RNA-seq data: RPKM measure is
    inconsistent among samples.Theory Biosci. 131 , 281– 285
    (2012). doi:10.1007/s12064-012-0162-3; pmid: 22872506


ACKNOWLEDGMENTS
We are grateful to the patients who participated in this study. We
thank the staff from the Animal Facility and Live-Cell Imaging
Facility at the Max Planck Institute for Multidisciplinary Sciences for
technical assistance; the clinicians, nursing team, and embryology
team at the clinics for their support of this study; L. Abdelhalim,
E. Bellou, and L. Wartosch for help with human oocytes; C. Mauksch
for help with optimizing thawing of vitrified human oocytes;
E. Bellou, T. Cavazza, and M. Daniel for help with bovine and
porcine ovaries; T. Ruhwedel for help with sample preparation for
electron microscopy; E. Bellou, A. Politi, and F. Xie for helpful
discussions; A. Andersen, T. Cavazza, P. Lénárt, and L. Wartosch for
critical comments on the manuscript; T. Hiiragi, the M. J. Fox Foundation,
M. Mancini, and X. Zhu for cDNAs and constructs; and D. A. Compton,
E. Nigg, G. Goshima, P. Meraldi, A. McAinsh, M. Takeichi,
and R. Uehara for antibodies.Funding:The research leading to
these results was funded by the Max Planck Society and the DFG
under a Leibniz Prize to M.S. (SCHU 3047/1-1) and a grant to
W.M. [MO 1084/2-1 (FOR2848, P8)]. C.So is a recipient of the
Max Planck Croucher Postdoctoral Fellowship. W.M. and M.S. were
supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy–EXC 2067/1-390729940.Author contributions:C.So
and M.S. conceived the study, designed experiments and methods
for data analysis; C.So performed all experiments and analyzed
the data with the following exceptions: K.M. performed Trim-Away
of NUMA in human oocytes; J.U. performed inhibition with
P150-CC1 in human oocytes; K.H. performed live imaging of
porcine oocytes and optimized live imaging of bovine oocytes;
A.M.S. prepared electron microscopy samples with C.So and
performed FIB-SEM; K.B.S. optimized Trim-Away of NUMA and
inhibition with P150-CC1 in human oocytes; and J.B. and G.L.
synthesized 5-SiR-CTX and 5-SiR-Hoechst. C.So and M.S. wrote the
manuscript and prepared the figures with input from all authors;
W.M. supervised the electron microscopy experiments; C.Si. and
A.T.-S. supervised the collection and vitrification of human oocytes
at Fertility Center Berlin; H.E. and R.M. supervised the collection
of human oocytes at Kinderwunschzentrum Göttingen; M.B. and
K.E. supervised the collection of human oocytes at Bourn Hall
Clinic; and M.S. supervised the entire study.Competing interests:
C.So and M.S. filed a patent application (EP21199120.3) based on
data presented here. The other authors declare no competing
financial interests.Data and materials availability:Plasmids are
available from M.S. under a material transfer agreement with the Max
Planck Society. All data needed to evaluate the conclusions in the
paper are present in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abj3944
Figs. S1 to S14
Tables S1 and S2
MDAR Reproducibility Checklist
Movies S1 to S18

10 May 2021; resubmitted 2 November 2021
Accepted 11 January 2022
10.1126/science.abj3944

Soet al.,Science 375 , eabj3944 (2022) 11 February 2022 19 of 19


RESEARCH | RESEARCH ARTICLE

Free download pdf