1.3 Solutions 85
1.103
<x>=∫∞
0xf(x)dx/∫∞
0f(x)dx=
∫∞
0x^2 e−xλ
dx/∫∞
0xe−xλ
dx=
2 λ^3
λ^2= 2 λMost probable value ofxis obtained by maximizing the functionxe−x/λd
dx(xe−x/λ)= 0e−xλ(
1 −x
λ)
= 0
∴x=λ
x(most probable)=λ1.3.14 NumericalIntegration
1.104 The trapezoidal rule is
Area=(
1
2
y 0 +y 1 +y 2 +···+yn− 1 +1
2
yn)
ΔxGiven integral is∫ 10
1 x(^2) dx.Dividex=1tox=10 into 9 intervals.
Thusb−na=^109 −^1 = 1 =Δx
Substituting the abscissas in the equationy=x^2 , we get the ordinatesy=
1 , 4 , 9 , 16 ,···100.
area=
(
1
2
+ 4 + 9 + 25 + 36 + 49 + 64 + 81 +
1
2
× 100
)
= 334. 5
This may be compared with the value obtained from direct integration,[
x^3
3] 10
1=333.
Theerroris0.45%.1.105 For Simpson’s rule
take 10 intervals
Hereb−na=^1010 −^0 = 1 =Δx
The area under the curvey=x^2 is given by
Δx
3
(y 0 + 4 y 1 + 2 y 2 + 4 y 3 + 2 y 4 +···+ 4 yn− 1 +yn)