2.3 Solutions 129
The precise statement of the Heisenberg uncertainty principle is
ΔPxΔx≥/ 2
ΔPyΔy≥/2(3)
ΔPzΔz≥/ 2
Consider the integral, a function of a real parameterλ
I(λ)=
∫∞
−∞
dx|(x−<x>)ψ+iλ(−i∂ψ/∂x−<Px>ψ|^2 (4)
By definition,I(λ≥0). Expanding (4)
I(λ)=
∫∞
−∞
dxψ∗(x−<x>)^2 ψ+λ
∫∞
−∞
dx
(
ψ∗∂ψ
∂x+ψ
∂ψ∗
∂x
)
(x−<x>)
+λ^2 ^2
∫∞
−∞
(
∂ψ∗
∂x
)
∂ψ
∂x−iλ
(^2)
∫∞
−∞
dx[ψ
∂ψ∗
∂x +λ
(^2)
∫∞
−∞
dxψ∗ψ (5)
The term in the second line can be written as
∫∞
−∞
dx
∂
∂x
(ψ∗ψ)(x−<x>)=[(x−<x>)ψ∗ψ]∞−∞−
∫∞
−∞
dxψ∗ψ=− 1
because it is expected thatψ→0. Sufficiently fast asx→±∞so that the
integrated term is zero. Similarly the third term can be re-written as
^2
∫∞
−∞
dx
(
∂ψ∗
∂x
)(
∂ψ
∂x
)
=^2
[
ψ∗
∂ψ
∂x
]∞
−∞
+
∫∞
−∞
dxψ∗(−^2 ∂^2 ψ/∂x^2 )=<Px^2 >
In term (4) rewrite
−i
∫∞
−∞
dx
∂ψ∗
∂x
ψ=−i
[
ψ∗ψ
]∞
−∞+
∫∞
−∞
dxψ∗i
∂ψ
∂x
=−<Px>
So, the full term (4) becomes− 2 <Px>^2.
Collecting all the terms
I(λ)=(Δx)^2 −λ+(ΔPx)^2 λ^2 ≥ 0
Denoting I(λ) = aλ^2 +bλ+c, the condition I(λ ≥ 0) is satisfied if
b^2 − 4 ac≥0.
Thus,^2 −4(Δx)^2 (ΔPx)^2 ≤0, and therefore
ΔPxΔx≥/ 2
2.85ΔxΔp=
cΔP≈cp=
c
Δx
=
197 .3MeV−fm
0. 529 × 10 −^10 m
= 372. 97 × 10 −^5 MeV= 3 ,730 eV
T=c^2 p^2 /mc^2 =(3,730)^2 / 0. 511 × 106 = 13 .61 eV