132 3 Quantum Mechanics – II
Table 3.1Dynamic quantities and operators
Physical Quantity Operator
Position r R
Momentum P −i∇Kinetic energy T −
^2
2 μ
∇^2
Potential energy VV(r)
Angular momentum square L^2 l(l+1)^2
z-component of angular momentum Lz −i
∂
∂φExpectation values of dynamical variables and operators
An arbitrary function of r has the expectation value
<f(r)>=∫
ψ∗f(r)ψdτ (3.7)The expectation value of P
=
∫
ψ∗(
i∇ψ)
dτ (3.8)The expectation value of the kinetic energy
=
∫
ψ∗(
−
^2
2 μ∇^2 ψ)
dτ (3.9)Pauli spin matrices
σx=(
01
10
)
,σy=(
0 −i
i 0)
,σz=(
10
0 − 1
)
(3.10)
σx^2 =σy^2 =σz^2 = 1 (3.11a)σxσy=iσz,σyσz=iσx,σzσx=iσy (3.11b)These matrices are both Hermetian and unitary. Further, any two Pauli matrices
anticommute
σxσy+σyσx= 0 ,etc. (3.11c)