170 3 Quantum Mechanics – II
∫a0ψn∗(x)ψn(x)dx= 1A^2
∫α0sin^2(nπx
a)
dx= 1(
A^2
2)(
x−cos(
2 nπx
a))∣
∣
∣
a
0=A^2 a= 1Therefore,A=(
2
a) 1 / 2
(9)
The normalized wave function isψn(x)=(
2
a)^12
sin(nπx
a)
(10)
Using the value ofαfrom (7) in (3), the energy isEn=n^2 h^2
8 ma^2(11)
(c) probabilityp=∫a
0 |ψ^3 (x)|(^2) dx
=
∫ 23 aa 3(
2
a)
sin^2(
3 πx
a)
dx=1
3
(d)ψ(n) and probability densityP(x) distributions forn = 1 ,2and3are
sketched in Fig 3.6Fig. 3.6
3.19 The Schrodinger equation for then–psystem in the CMS is
∇^2 ψ(r,θ,φ)+(
2 μ
^2)
[E−V(r)]ψ(r,θ,φ)=0(1)