172 3 Quantum Mechanics – II
The solutions areu 1 (r)=Asinkr+Bcoskr;r<R (11)
u 2 (r)=Ce−γr+Deγr;r>R (12)
Boundary conditions: asr→ 0 ,u 1 → 0
and asr→∞,u 2 must be finite. This means thatB=D=0.
Therefore the physically accepted solutions are
u 1 =Asinkr (13)
u 2 =Ce−γr (14)At the boundary,r=R,u 1 =u 2 and their first derivatives
(
du 1
dr)
r=R=
(
du 2
dr)
r=R
These lead to
AsinkR=Ce−γr (15)
AkcoskR=−γCe−γr (16)Dividing the two equations
kcotkR=−γ (17)
OrcotkR=−γ
k(18)
NowV 0 W, so cotkRis a small negative quantity. ThereforekR ≈
π/ 2 k^2 R^2 =(π
2) 2
OrM(V 0 −W)R^2
^2
=
π^2
4
Again neglectingWcompared toV 0V 0 R^2 ≈
π^2 ^2
4 M3.20 The inside wave function is of the formu=Asinkr. BecauseV(r)=0for
r>R, we need to consider contribution to
=
∫R
0u∗(−V 0 )udr=−V 0 A^2∫R
0sin^2 krdr=
(
−
V 0 A^2
2
)∫ R
0(1−cos 2kr)dr=−V 0 A^2
[
R
2
−
sin 2kR
4 k