1.1 Basic Concepts and Formulae 3
an=1
L
∫L
−Lf(x) cos(nπx/L)dx (1.5)bn=1
L
∫L
−Lf(x)sin(nπx/L)dx (1.6)Complex form of Fourier series
Assuming that the Series (1.1) converges atf(x),
f(x)=∑∞
n=−∞
Cneinπx/L (1.7)with
Cn=1
L
∫C+ 2 L
Cf(x)e−iπnx/Ldx=⎧
⎪⎨
⎪⎩
1
2 (an−ibn) n>^0
1
1 2 (a−n+ib−n)n<^0
2 ao n=^0(1.8)
Fourier transforms
The Fourier transform off(x) is defined as
(f(x))=F(α)=∫∞
−∞f(x)eiαxdx (1.9)and the inverse Fourier transform ofF(α)is
−^1 (f(α))=F(x)=1
2 π∫∞
−∞F(α)ei∝xdα (1.10)f(x) andF(α) are known as Fourier Transform pairs. Some selected pairs are given
in Table 1.1.
Table 1.
f(x) F(α) f(x) F(α)
1
x^2 +a^2πe−aα
a
e−ax
a
α^2 +a^2
x
x^2 +a^2
−πiα
a
e−aα e−ax^21
2√
π
a
e−α^2 /^4 a
1
xπ
2
xe−ax^2√
π
4 a^3 /^2
αe−α^2 /^4 aGamma and beta functions
The gamma functionΓ(n) is defined by