3.3 Solutions 185
3.37 (a)un=( 2
L) 1 / 2
sin(nπx
L)
<x>=∫ L
0u∗nxundx=(
2
L
)∫ L
0xsin^2(nπxa)
dx=
L
2
+
(
L
4 n^2 π^2)
(cos(2nπ)−1)The second term on the RHS vanishes for any integral value ofn. Thus<x>=L
2
Varx=σ^2 =<(x−<x>)^2 >=<x^2 >−<x>^2 =<x^2 >−L^2
4
Now <x^2 >=∫L
0u∗nx^2 undx=(
2
L
)∫L
0x^2 sin^2(nπx
L)
dx=
L^2
3
−
L^2
2 n^2 π^2σ^2 =<x^2 >−<x>^2 =L^2
3
−
L^2
2 n^2 π^2−
L^2
4
=
(
L^2
12
)(
1 −
6
n^2 π^2)
Forn→∞,<x>=L 2 ;σ^2 →L^2 / 12
(b) Classically the expected distribution is rectangular, that is flat.
The normalized functionf(x)=1
L
<x>=∫
xf(x)dx=∫ L
0xdx
L=
L
2
σ^2 =<x^2 >−<x>^2<x^2 >=∫ L
0x^2 f(x)dx=L^2 / 3∴σ^2 =L^2
3
−
L^2
4
=
L^2
12
Fig. 3.14
3.38 H=
(
−
^2
2 m)
∇^2 +ar^2[
1 −
5
6
sin^2 θcos^2 φ]
(1)
In spherical coordinatesx=rsinθ cosφ. Therefore