3.3 Solutions 205
P(x)=1
π√
a^2 −x^2(5)
3.57 Schrodinger’s equation in one dimension is
(
−^2
2 m)
d^2 ψ
dx^2+V(x)ψ=Eψ (1)Givenψ=exp(−1
2
ax^2 )(2)Differentiating twice,
we getd^2 ψ
dx^2exp(−1
2
ax^2 )(a^2 x^2 −a)(3)Inserting (2) and (3) in (1), we getV(x)=E+(
^2
2 m)
(a^2 x^2 −a)(4)Minimum value ofV(x) is determined fromdV
dx=
^2 a^2 x
m= 0
Minimum ofV(x) occurs atx= 0
From (4) we find 0=E−(^2) a
2 m
(a) Or the eigen valueE=
(^2) a
2 m
(b)V(x)=
(^2) a
2 m+
(
^2
2 m)
(a^2 x^2 −a)=(^2) a (^2) x 2
2 m
3.58
n=En
2<P^2
2 m>n=<H>n−<V>n=^1 / 2 En<P^2 >n=mEn
Also<x>n=0;<P>n= 0
<(Δx)^2 >=<x^2 >n−<x^2 >n
<(
ΔP^2
)
>=<P^2 >n−<Pn>^2 =<P^2 >n=mEnBut<x^2 >n=∫∞
−∞u∗
n(x)x(^2) un(x)dx;ξ=αx