3.3 Solutions 219
Apart from the factor 1/r^2 , the angular part is seen to be
∂^2 ψ
∂θ^2
+cotθ
∂ψ
∂θ
+
1
sin^2
∂^2 ψ
∂φ^2
3.84 (a) The (i,j)th matrix element of an operatorOis defined by
Oij=<i|o|j> (1)
Forj= 1 / 2 ,m= 1 /2 and− 1 /2. The two states are
| 1 >=|
1
2
,
1
2
>and| 2 >=|
1
2
,−
1
2
> (2)
With the notation|j,m>
Now
<j′m′|Jz|jm>=mδjj′δmm′ (3)
Thus
(Jz) 11 =< 1 |Jz| 1 >=
1
2
(4)
(Jz) 22 =< 2 |Jz| 2 >=−
1
2
(5)
(Jz) 12 =< 1 |Jz| 2 >=
〈
1
2
,
1
2
|Jz|
1
2
,
1
2
〉
=0(6)
because of (3).
Similarly
(Jz) 21 =0(7)
Therefore
Jz=
2
(
10
0 − 1
)
(8)
ForJxandJy, we use the relations
Jx=^1 / 2 (J++J−) andJy=−
(
1
2 i
)
(J+−J−)
<j,m|Jx|j,m>=<j,m|
1
2
(J++J−)|j,m>
=^1 / 2 [(j+m+1)(j−m)]^1 /^2 <j,m′|j,m+^1 >
+^1 / 2 [(j−m+1)(j+m)]^1 /^2 <j,m′|j,m− 1 >
=^1 / 2 [(j+m+1)(j−m)]^1 /^2 δm′,m+ 1
+^1 / 2 [(j−m+1)(j+m)]
(^1) / 2
δm′,m− 1
That is the matrix element is zero unlessm′=m+1orm′=m−1.
The first delta factor survives