1000 Solved Problems in Modern Physics

(Tina Meador) #1

3.3 Solutions 229


3.3.7 Approximate Methods .........................


3.97ΔE=<ψ|δU|ψ>
δU=U(interaction energy of electron with point charge nucleus)

δU=e^2 /r−

3 e^2
2 R

(

R^2 −

r^2
3

)

forr≤R

=0forr≥R

(a) First we considern=1 state

ΔE=

(

e^2
πa 03

)∫ R

0

exp

(


2r
a 0

)[

1

r


3

2 R

+^1 / 2

r^2
R^3

]

4 πr^2 dr

=

2 e^2
a^30

∫ R

0

e−2r/a^0

[

2 r−

3 r^2
R

+

r^4
R^3

]

dr

NowR= 10 −^13 cm 10 −^8 cm=a 0 , the factor exp

(

−^2 ar 0

)

≈ 1

ΔE=

(

2 e^2
a 03

)(

R^2 −R^2 +

R^2

5

)

=

4

5

(

e^2
2 a 0

)(

R

a 0

) 2

=(0.8)(13.6)

(

10 −^13

0. 53 × 10 −^8

) 2

= 3. 87 × 10 −^9 eV
(b)n= 2

ψ 200 =

(

1

8 πa 03

)^12 (

2 −

r
a 0

)

exp

(


r
2 a 0

)

ΔE=

(

e^2
8 πa 03

)∫R

0

exp

(


r
a 0

)(

2 −

r
a 0

) 2 [

1

r


3

2 R

+^1 / 2

r^2
R^3

]

4 πr^2 dr

Here also exp

(

−ar 0

)

∼1, for reasons indicated in (a)
When the remaining factors are integrated we get

ΔE=

(

e^2
2 a 0

)(

R^2

a^20

)[

2

5


1

6

R

a 0

+

3

140

R^2

a 02

]


2

5

.

(

e^2
2 a 0

)(

R

a 0

) 2 (

as

R

a 0

<< 1

)

=^1 / 2 × 3. 87 × 10 −^9 = 1. 93 × 10 −^9 eV
where we used the result of (a)

3.98 Schrodinger’s equation in the presence of electric field is
[(

^2

2 m

)

d^2
dx^2

+^1 / 2 mω^2 x^2 +qEx

]

ψn=Enx (1)

Now,^1 / 2 mω^2 x^2 +qEx=^1 / 2 mω^2

[

x^2 +^2 mqExω 2

]
Free download pdf