234 3 Quantum Mechanics – II
Nowψican be expanded as a sum of partial waves
ψi=eikrcosθ=
∑∞
l= 0
Aljl(kr)pl(cosθ)(8)
wherejl(kr) are the spherical Bessel functions andpl(cosθ) are the Legen-
dre polynomials of degreel.Forr→∞,jl(kr)≈kr^1 sin
(
kr−π 2 l
)
.TheAl
are some constants which can be evaluated as follows.
Multiply both sides of (8) byPl(cosθ)sinθdθand integrate. Put cosθ=t
Aljl(kr)2/(2l+1)=
∫+ 1
− 1
eikrtpl(t)(d)t
where we have used the orthonormal property of Legendre polynomials.
Integrating the RHS by parts
(1/ikr)
[
eikrtpl(t)
]+ 1
− 1 −(1/ikr)
∫
eikrtpl′(t)dt
where prime (′) means differentiation with respect to t. The second term is of
the order of 1/r^2 which can be neglected. Therefore
[
2
2 l+ 1
]
Aljl(kr)≈
(
1
ikr
)
[
eikr−e−ikr(−1)l
]
(9)
where we have usedpl(1)=1 andpl(−1)=(−1)l
Also, using the identity
eiπl/^2 =il (10)
(9) becomes
[
2
2 l+ 1
]
Aljl(kr)≈
[
2 il
kr
][
ei(kr−
πl
2 )−e−i(kr−
πl
2 )
]
2 i
=
2 ilsin
(
kr−π 2 l
)
kr
Thus
Aljl(kr)=
(2l+1)ilsin
(
kr−π 2 l
)
kr
(11)
Similarly, we can expand the total wave function into components
ψ(r,θ)=
∑∞
l= 0
BlRl(r)pl(cosθ)
=
∑
r→∞
(
Bk
kr
)
sin
(
kr−
πl
2
+δl
)
pl(cosθ)
where Blare arbitrary coefficients andδlis the phase-shift of thelth wave.
From (6)
f(θ)=re−ikr
[∑
Bl
(
1
kr
sin
(
kr−
πl
2
+δl
)
pl(cosθ)
)
−
Σil(2l+1)
kr
sin
(
kr−
πl
2
)
pl(cosθ)