3.3 Solutions 237
3.109 By Problem 3.104
σ(θ)=1
k^2[
sin^2 δ 0 +6sinδ 0 sinδ 1 cos(δ 1 −δ 0 ) cosθ+9sin^2 δ 1 cos^2 θ]
(1)
We assume that at low energiesδ 1 δ 0. Now in the scattering with a hard
spheretanδl=−(ka)^2 l+^1
(2l+1)(1. 1. 3. 5 ... 2 l−1)^2
δ 0 (H.sphere)=−ka, for allka
Andδ 1 (H.sphere)=−(ka)3
3 ,forka^1
Neglecting higher powers ofδ′s, we can write (1)σ(θ)=1
k^2[(
δ 0 −δ 03
3!) 2
+ 6 δ 0 δ 1 cosδ]
=
1
k^2[
δ 02 −δ^40
3+ 6 δ 0 δ 1 cosδ]
=
1
k^2[
k^2 a^2 −k^4 a^4
3+6(−ka)(
−
k^3 a^3
3)
cosθ]
=a^2[
1 −
k^2 a^2
3+ 2 k^2 a^2 cosθ]
σ=∫(
dσ
dΩ)
. 2 πsinθdθ= 2 π
∫+ 1
− 1a^2(
1 −
k^2 a^2
3+ 2 k^2 a^2 cosθ)
d cosθ= 4 πa^2[
1 −
(ka)^2
3]
3.110 A spherical nucleus of radiusRwill be totally absorbing, or appear “black”
when the angular momentuml<R/λ. In that caseηl=0 in the reaction
and scattering formulae.
σr=πλ-^2∑
l
(2l+1)(1−|ηl|^2 )σs=πλ-^2∑
l(2l+1)|^1 −ηl|2(|>ηl>0)
Puttingηl= 0σr=σs=πλ-^2∑R/λ
l= 0
(2l+1)The summation can be carried out by using the formula for arithmetic
progressionS=na+n(n−1)d
2
Herea= 1 ,d= 2 ,n=R/λ-