4.3 Solutions 261
4.5 (a)νpis found by maximizing the Maxwellian distribution.
d
dν[ν^2 exp(−mν^2 / 2 kT)]= 0
exp(−mν^2 /kT)[2ν−mν^3 /kT]= 0
whenceν=νp=(2kT/m)^1 /^2
(b)νp:<ν>:<ν^2 >^1 /^2 :: (2kT/m)^1 /^2 :(8kT/πm)^1 /^2 :(3kT/m)^1 /^2
=√
2:
√
8 /π:√
3
4.6 <ν^2 >^1 /^2 =(
3 kT
m) 1 / 2
=
(
3 × 1. 38 × 10 −^23 × 273
1. 67 × 10 −^27
) 1 / 2
= 2 ,601 m/s at N.T.P<ν^2 >^1 /^2 =(
3 × 1. 38 × 10 −^23 × 400
1. 67 × 10 −^27
) 1 / 2
= 3 ,149 m/s at 127◦C.4.7<ν^2 >^1 /^2 =(
3 p
ρ) 1 / 2
=
(
3 ×(300/760)× 1. 013 × 105
0. 3
) 1 / 2
=632 m/s4.8 <
1
ν>=
1
N
∫∞
01
νN(ν)dν=
1
N
∫∞
01
ν. 4 πN
( m
2 πkT) 3 / 2
v^2 exp(−mν^2 / 2 kT)dνSetmν^2 / 2 kT=x;vdν=kTdx/m<1
ν>=(2m/πkT)^1 /^2∫∞
0exp(−x)dx=(2m/πkT)^1 /^24.9 N(ν)dν= 4 πN(m/ 2 πkT)^3 /^2 ν^2 exp(−mv^2 / 2 kT)dν (1)
νp=(2kT/m)^1 /^2 (2)
Letν/νp=α;dν=νpdα (3)Use (2) and (3) in (1)
N(α)dα=4 N
√
πα^2 exp(−α^2 )dα4.10 Fraction
f=N(ν)dv
N= 4 π[ m
2 πkT] 3 / 2
ν^2 exp(−mν^2 / 2 kT)dνν=199 + 201
2
=200 m/s
dν= 201 − 199 =2m/s