264 4 Thermodynamics and Statistical Physics
P−=
dAdt
2 λ∫∞
0νdn∫∞
0e−r/λdr∫π/ 20sinθcosθ(
mu+rcosθdmu
dz)
dθThe factore−r/λis included to ensure that the molecule in traversing the
distancertoward dAdoes not get scattered and prevented from reaching dA.
Similarly, transport of momentum upward, from molecules in the lower
hemisphere through dAin time dtisP+=
dAdt
2 λ∫∞
0νdn∫∞
0e−r/λdr∫π/ 20sinθcosθ(
mu−rcosθdmu
dz)
dθHence net momentum transfer to the reference plane through an area dAin
time dtisP=P−−P+=
dAdt
λmdu
dz∫∞
0νdn∫∞
0re−r/λdr∫π/ 20cos^2 θsinθdθ=
dAdt
λmdu
dzn<ν>λ^2
3=m
3dAdtdu
dzλn<ν>(the first integral givesn<ν>, the second oneλ^2 and the third one a factor
1/3)
Momentum transported per second is forceF=λ
3dAn<ν>mdu
dz
The viscous force isηdAdu
dz=
λ
3dAn<ν>mdu
dz
or η=1
3
mn<ν>λ=1
3
ρ<ν>λwheremn=ρ=density of molecules.4.16λ=
1
√
2 πnσ^2=
1
√
2 π× 3 × 1025 ×(2. 5 × 10 −^10 )^2
= 1. 2 × 10 −^7 m
f=ν
λ=
1 , 000
1. 2 × 10 −^7
= 8. 33 × 109 s−^14.17 T 1 V 1 γ−^1 =T 2 V 2 γ−^1 ,
(
V 2
V 1
)γ− 1
=T 1
T 2
or 2γ−^1 = 1. 32 ,γ= 1. 4
Number of degrees of freedom,f=2
γ− 1