5.3 Solutions 311
5.44 I=I 0 [exp(eV/kT)−1] (1)
1
re
=
dI
dV
=
eI 0
kT
exp(eV/kT)(2)
But exp (eV/kT)1. Therefore
1
re
=
eI
kT
orre=
kT
eI
=
1. 38 × 10 −^23 × 300
1. 6 × 10 −^19 I
=
25. 875 × 10 −^3
I
If I is in milliamp.
re≈
26
I
(forward bias) (3)
For the reversed bias we note from (2)
1
re
=
dI
dV
=
e
kT
I 0 exp (eV/kT)=^0
For V≤− 4 kT/e,re→∞.(reverse bias) (4)
5.45 For a semiconductor in equilibrium the product ofn(=Nd) andp(=Na)is
equal ton^2 i, the square of the intrinsic concentration.
n×p=n^2 i
p=
n^2 i
n
=
(1. 6 × 1016 )^2
8 × 1021
= 3. 2 × 1010 m−^3
5.3.5 Superconductor ....................................
5.46λ=
1241
E(eV)
nm=
1 , 241
2. 73 × 10 −^3
= 4. 546 × 105 nm
5.47 Eg=
1241
λ(nm)
=
1 , 241
1. 08 × 106
= 1. 15 × 10 −^3 eV
5.48 f=
2eV
h
=
2(1. 602 × 10 −^19 )(1. 5 × 10 −^6 )
6. 626 × 10 −^34
= 7. 253 × 108 Hz= 0 .7253 GHz
5.49 Eg= 3. 53 kTc=(3.53)
(1. 38 × 10 −^23 )
1. 6 × 10 −^19
(3.4)= 1. 035 × 10 −^3 eV
5.50 Tc(B)=Tc
(
1 −
B
Bc
) 1 / 2
2. 0 = 7. 19
(
1 −
0. 074
Bc
) 1 / 2
Solving forBc, we getBc= 0. 079 T.