1.2 Problems 23Fig. 1.2Saw-tooth wave1.19 Use the result of Problem 1.18 for the Fourier series for the square wave to
prove that:1 −1
3
+
1
5
−
1
7
+··· =
π
41.20 Find the Fourier transform off(x)={
1 ,|x|<a
0 ,|x|>a1.21 Use the Fourier integral to prove that:
∫∞
0cosaxdx
1 +a^2=
π
2e−x1.22 Show that the Fourier transform of the normalized Gaussian distributionf(t)=1
τ√
2 πe−t^2
2 τ^2 , −∞<t<∞is another Gaussian distribution.1.2.3 Gamma and Beta Functions
1.23 The gamma function is defined by:Γ(z)=∫∞
0e−xxz−^1 dx,(Re z>0)(a) Show thatΓ(z+1)=zΓ(z)
(b) And ifzis a positive integern, thenΓ(n+1)=n!1.24 The Beta functionB(m,n) is defined by the definite integral:B(m,n)=∫ 1
0xm−^1 (1−x)n−^1 dxand this defines a function ofmandnprovidedmandnare positive. Show
that:B(m,n)=T(m)T(n)
T(m+n)