1000 Solved Problems in Modern Physics

(Tina Meador) #1

408 7 Nuclear Physics – I


Fig. 7.15


hν 0 /c=hνcosθ/c+Pecosφ (2)
0 =−hνsinθ/c+Pesinφ (3)
wherePeis the electron momentum
Re-arranging (2) and (3) and squaring

Pe^2 cos^2 φ=

(

hν 0
c


hνcosθ
c

) 2

(4)

Pe^2 sin^2 φ=

(

h
c

νsinθ

) 2

(5)

Add (4) and (5) and using the relativistic equation
c^2 Pe^2 =T^2 + 2 Tmc^2 =h^2 (ν 02 +ν^2 − 2 ν 0 νcosθ)(6)

Eliminating T between (1) and (2) and simplifying we get
E=E 0 /[1+α(1−cosθ)] (7)

(b)T = E 0 −E = E 0 −E 0 /[1+α(1−cosθ)]= [αE 0 (1−cosθ)]/
[1+α(1−cosθ)] (8)
(c) From (2) and (3), we get
Cotφ=(ν 0 −νcosθ)/νsinθ
With the aid of (7), and re-arranging we find tan(θ/2) = (1+α)
tanφ (9)

7.54 Fractional shift in frequency is


Δν/ν 0 =

1

1 + Mc
2
2 hν 0 sin^2 (θ 2 )

hν 0 =Eγ= 1 , 241 /λnm= 1 , 241 / 0. 1 = 12 ,410 eV= 0 .01241 MeV
Putθ= 180 ◦andMC^2 = 938 .3 MeV to obtain

(Δν/ν 0 )max=

1

1 + 2 ×^9380. 01241.^3

= 2. 645 × 10 −^5

7.55 The energy of scattered photon will be


hν=hν 0 /[1+α(1−cosθ)]
Free download pdf