408 7 Nuclear Physics – I
Fig. 7.15
hν 0 /c=hνcosθ/c+Pecosφ (2)
0 =−hνsinθ/c+Pesinφ (3)
wherePeis the electron momentum
Re-arranging (2) and (3) and squaring
Pe^2 cos^2 φ=
(
hν 0
c
−
hνcosθ
c
) 2
(4)
Pe^2 sin^2 φ=
(
h
c
νsinθ
) 2
(5)
Add (4) and (5) and using the relativistic equation
c^2 Pe^2 =T^2 + 2 Tmc^2 =h^2 (ν 02 +ν^2 − 2 ν 0 νcosθ)(6)
Eliminating T between (1) and (2) and simplifying we get
E=E 0 /[1+α(1−cosθ)] (7)
(b)T = E 0 −E = E 0 −E 0 /[1+α(1−cosθ)]= [αE 0 (1−cosθ)]/
[1+α(1−cosθ)] (8)
(c) From (2) and (3), we get
Cotφ=(ν 0 −νcosθ)/νsinθ
With the aid of (7), and re-arranging we find tan(θ/2) = (1+α)
tanφ (9)
7.54 Fractional shift in frequency is
Δν/ν 0 =
1
1 + Mc
2
2 hν 0 sin^2 (θ 2 )
hν 0 =Eγ= 1 , 241 /λnm= 1 , 241 / 0. 1 = 12 ,410 eV= 0 .01241 MeV
Putθ= 180 ◦andMC^2 = 938 .3 MeV to obtain
(Δν/ν 0 )max=
1
1 + 2 ×^9380. 01241.^3
= 2. 645 × 10 −^5
7.55 The energy of scattered photon will be
hν=hν 0 /[1+α(1−cosθ)]