418 7 Nuclear Physics – I
Fig. 7.18
7.86 The flow of heat in a material placed between the walls of a coaxial cylinder
is given by
dQ
dt
=
2 πL
ln
(
r 2
r 1
)(T 1 −T 2 )(1)
Number of decays of radon atoms per second
dN/dt= 100 × 10 −^3 × 3. 7 × 1010 = 3. 7 × 109 disintegration/second
Energy deposited byα′s=^3.^7 ×^109 ×^5 .5MeV/s
= 2. 035 × 1010 MeV/s= 3. 256 × 10 −^7 J= 0. 779 × 10 −^3 Cal/s
Using the values,k= 0 .025 Cal cm−^2 s−^1 C−^1 ,L=5cm,r 1 =2 mm and
r 2 =6 mm in (1), and solving for (T 1 −T 2 ) we find (T 1 −T 2 )= 1. 09 ◦C
7.87 In the series decay A→B→C, ifλA<λBthe transient equilibrium occurs
when
NB/NA=λA/(λB−λA)
Here A=Uranium and B=Radium
λA= 1 /τA= 0. 693 / 4. 5 × 109 year−^1 ,λB= 1 /τB= 0. 693 / 1 ,620 year−^1
N(Rad)/N(U)≈ 1 , 620 / 4. 5 × 109 = 1 / 2. 78 × 106
7.88 Use the law of radioactivity
NA=NA^0 exp(−λAt)(1)
NB=NB^0 exp(−λBt)(2)
Dividing (2) by (1)
NB/NA=exp(λA−λB)t (BecauseNA^0 =NB^0 )
Take logeon both sides
t=
1
(λA−λB)ln