428 8 Nuclear Physics – II
The shell model energy levels are:
[
1 s^12
][
1 p 32 , 1 p (^12)
][
1 d 52 , 2 s 12 , 1 d (^32)
][
1 f (^72)
][
2 p 32 , 1 f 52 , 2 p 12 , 1 g (^92)
]
[
1 g 72 , 2 d 52 , 2 d 32 , 3 s 12 , 1 h (^112)
]
... (8.4)
Liquid drop model (8.5)
M(atom)=ZMH+(A−Z)Mn−Δ (8.6)
Δ=mass defect
P=
M−A
A
=packing fraction. (8.7)
1amu=
1
12
of atomic mass of^12 C atom (8.8)
f=
B.E
A
(8.9)
1amu= 931 .5 Mev (8.10)
1amu= 1. 66 × 10 −^27 kg (8.11)
The f-A curve is shown in Fig. 8.1. A more detailed diagram is shown in
Problem 8.40
Fig. 8.1BE/A Versus A
Stability against decay
β−−decay :M(Z,A)≤M(Z+ 1 ,A) (8.12)
β+−decay :M(Z+ 1 ,A)≤M(Z,A)+ 2 Me (8.13)
e−capture :M(Z+ 1 ,A)≤M(Z,A) (8.14)
α−decay :M(Z,A)≤M(Z− 2 , A−4)+MHe 4 (8.15)
Assuming thatγ-ray precedes the decay, the energy released
Qβ−=[M(Z,A)−M(Z+ 1 ,A)]c^2 =Tmax+Tγ (8.16)
Qβ+=[M(Z+ 1 ,A)−M(Z,A)]c^2 = 2 Mec^2 +Tmax+Tγ (8.17)
QEC=[M(Z+ 1 ,A)−M(Z,A)]c^2 =Tv+Tγ (8.18)